Previous |  Up |  Next

Article

Title: Finiteness of meromorphic functions on an annulus sharing four values regardless of multiplicity (English)
Author: Si, Duc Quang
Author: Tran, An Hai
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 145
Issue: 2
Year: 2020
Pages: 163-176
Summary lang: English
.
Category: math
.
Summary: This paper deals with the finiteness problem of meromorphic funtions on an annulus sharing four values regardless of multiplicity. We prove that if three admissible meromorphic functions $f_1$, $f_2$, $f_3$ on an annulus $\mathbb A({R_0})$ share four distinct values regardless of multiplicity and have the {\it complete identity set} of positive counting function, then $f_1=\nobreak f_2$ or $f_2=f_3$ or $f_3=f_1$. This result deduces that there are at most two admissible meromorphic functions on an annulus sharing a value with multiplicity truncated to level $2$ and sharing other three values regardless of multiplicity. This result also implies that there are at most three admissible meromorphic functions on an annulus sharing four values regardless of multiplicities. These results are a generalization and improvement of the previous results on finiteness problem of meromorphic functions on $\mathbb C$ sharing four values. (English)
Keyword: meromorphic function
Keyword: Nevanlinna theory
Keyword: annulus
MSC: 30D35
MSC: 32H30
idZBL: 07217187
idMR: MR4221827
DOI: 10.21136/MB.2019.0121-17
.
Date available: 2020-06-10T13:15:41Z
Last updated: 2021-04-19
Stable URL: http://hdl.handle.net/10338.dmlcz/148152
.
Reference: [1] Banerjee, A.: Weighted sharing of a small function by a meromorphic function and its derivative.Comput. Math. Appl. 53 (2007), 1750-1761. Zbl 1152.30321, MR 2332104, 10.1016/j.camwa.2006.10.026
Reference: [2] Bhoosnurmath, S. S., Dyavanal, R. S.: Uniqueness and value-sharing of meromorphic functions.Comput. Math. Appl. 53 (2007), 1191-1205. Zbl 1170.30011, MR 2327673, 10.1016/j.camwa.2006.08.045
Reference: [3] Cao, T.-B., Deng, Z.-S.: On the uniqueness of meromorphic functions that share three or two finite sets on annuli.Proc. Indian Acad. Sci., Math. Sci. 122 (2012), 203-220. Zbl 1269.30036, MR 2945092, 10.1007/s12044-012-0074-7
Reference: [4] Cao, T.-B., Yi, H.-X., Xu, H.-Y.: On the multiple values and uniqueness of meromorphic functions on annuli.Comput. Math. Appl. 58 (2009), 1457-1465. Zbl 1189.30065, MR 2555283, 10.1016/j.camwa.2009.07.042
Reference: [5] Fujimoto, H.: Uniqueness problem with truncated multiplicities in value distribution theory.Nagoya Math. J. 152 (1998), 131-152. Zbl 0937.32010, MR 1659377, 10.1017/S0027763000006826
Reference: [6] Gundersen, G. G.: Meromorphic functions that share four values.Trans. Am. Math. Soc. 277 (1983), 545-567. Zbl 0508.30029, MR 0694375, 10.2307/1999223
Reference: [7] Ishizaki, K., Toda, N.: Unicity theorems for meromorphic functions sharing four small functions.Kodai Math. J. 21 (1998), 350-371. Zbl 0946.30019, MR 1664754, 10.2996/kmj/1138043945
Reference: [8] Khrystiyanyn, A. Y., Kondratyuk, A. A.: On the Nevanlinna theory for meromorphic functions on annuli. I.Mat. Stud. 23 (2005), 19-30. Zbl 1066.30036, MR 2150985
Reference: [9] Khrystiyanyn, A. Y., Kondratyuk, A. A.: On the Nevanlinna theory for meromorphic functions on annuli. II.Mat. Stud. 24 (2005), 57-68. Zbl 1092.30048, MR 2210430
Reference: [10] Li, X., Yi, H., Hu, H.: Uniqueness results of meromorphic functions whose derivatives share four small functions.Acta Math. Sci., Ser. B, Engl. Ed. 32 (2012), 1593-1606. Zbl 1274.30120, MR 2927447, 10.1016/S0252-9602(12)60126-X
Reference: [11] Lund, M., Ye, Z.: Nevanlinna theory of meromorphic functions on annuli.Sci. China, Math. 53 (2010), 547-554. Zbl 1193.30044, MR 2608311, 10.1007/s11425-010-0037-3
Reference: [12] Nevanlinna, R.: Einige Eindeutigkeitssätze in der Theorie der meromorphen Funktionen.Acta Math. 48 German (1926), 367-391. Zbl 52.0323.03, MR 1555233, 10.1007/BF02565342
Reference: [13] Quang, S. D.: Unicity of meromorphic functions sharing some small functions regardless of multiplicities.Int. J. Math. 23 (2012), Article ID 1250088, 18 pages. Zbl 1284.30020, MR 2959434, 10.1142/S0129167X12500887
Reference: [14] Quang, S. D.: Finiteness problem of meromorphic functions sharing four small functions regardless of multiplicities.Int. J. Math. 25 (2014), Article ID 1450102, 20 pages. Zbl 1304.30044, MR 3285302, 10.1142/S0129167X1450102X
.

Files

Files Size Format View
MathBohem_145-2020-2_4.pdf 307.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo