Title:
|
Some approximation results in Musielak-Orlicz spaces (English) |
Author:
|
Youssfi, Ahmed |
Author:
|
Ahmida, Youssef |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
70 |
Issue:
|
2 |
Year:
|
2020 |
Pages:
|
453-471 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We prove the continuity in norm of the translation operator in the Musielak-Orlicz $L_{M}$ spaces. An application to the convergence in norm of approximate identities is given, whereby we prove density results of the smooth functions in $L_{M}$, in both the modular and norm topologies. These density results are then applied to obtain basic topological properties. (English) |
Keyword:
|
approximate identity |
Keyword:
|
Musielak-Orlicz space |
Keyword:
|
density of smooth functions |
MSC:
|
46B10 |
MSC:
|
46E30 |
idZBL:
|
07217145 |
idMR:
|
MR4111853 |
DOI:
|
10.21136/CMJ.2019.0355-18 |
. |
Date available:
|
2020-06-17T12:34:36Z |
Last updated:
|
2022-07-04 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/148239 |
. |
Reference:
|
[1] Adams, R. A., Fournier, J. J. F.: Sobolev Spaces.Pure and Applied Mathematics 140, Academic Press, New York (2003). Zbl 1098.46001, MR 2424078, 10.1016/S0079-8169(13)62896-2 |
Reference:
|
[2] Benkirane, A., Douieb, J., Val, M. Ould Mohamedhen: An approximation theorem in Musielak-Orlicz-Sobolev spaces.Commentat. Math. 51 (2011), 109-120. Zbl 1294.46025, MR 2849685, 10.14708/cm.v51i1.5313 |
Reference:
|
[3] Benkirane, A., Val, M. Ould Mohamedhen: Some approximation properties in Musielak-Orlicz-Sobolev spaces.Thai J. Math. 10 (2012), 371-381. Zbl 1264.46024, MR 3001860 |
Reference:
|
[4] Bennett, C., Sharpley, R.: Interpolation of Operators.Pure and Applied Mathematics 129, Academic Press, Boston (1988). Zbl 0647.46057, MR 0928802, 10.1016/S0079-8169(13)62909-8 |
Reference:
|
[5] Cruz-Uribe, D., Fiorenza, A.: Approximate identities in variable $L^{p}$ spaces.Math. Nachr. 280 (2007), 256-270. Zbl 1178.42022, MR 2292148, 10.1002/mana.200410479 |
Reference:
|
[6] Diening, L., Harjulehto, P., Hästö, P., Růžička, M.: Lebesgue and Sobolev Spaces with Variable Exponents.Lecture Notes in Mathematics 2017, Springer, Berlin (2011). Zbl 1222.46002, MR 2790542, 10.1007/978-3-642-18363-8 |
Reference:
|
[7] Hudzik, H.: A generalization of Sobolev spaces. II.Funct. Approximatio, Comment. Math. 3 (1976), 77-85. Zbl 0355.46011, MR 0467279 |
Reference:
|
[8] Kamińska, A.: On some compactness criterion for Orlicz subspace $E_{\Phi}(\Omega)$.Ann. Soc. Math. Pol., Ser. I, Commentat. Math. 22 (1981), 245-255. Zbl 0504.46024, MR 0641438, 10.14708/cm.v22i2.6021 |
Reference:
|
[9] Kamińska, A.: Some convexity properties of Musielak-Orlicz spaces of Bochner type.Rend. Circ. Mat. Palermo, II. Ser. Suppl. 10 (1985), 63-73. Zbl 0609.46015, MR 0894273 |
Reference:
|
[10] Kamińska, A., Hudzik, H.: Some remarks on convergence in Orlicz space.Commentat. Math. 21 (1980), 81-88. Zbl 0436.46022, MR 0577673, 10.14708/cm.v21i1.5965 |
Reference:
|
[11] Kamińska, A., Kubiak, D.: The Daugavet property in the Musielak-Orlicz spaces.J. Math. Anal. Appl. 427 (2015), 873-898. Zbl 1325.46012, MR 3323013, 10.1016/j.jmaa.2015.02.035 |
Reference:
|
[12] Kováčik, O., Rákosník, J.: On spaces $L^{p(x)}$ and $W^{k,p(x)}$.Czech. Math. J. 41 (1991), 592-618. Zbl 0784.46029, MR 1134951, 10.21136/CMJ.1991.102493 |
Reference:
|
[13] Krasnosel'skiĭ, M. A., Rutitskiĭ, J. B.: Convex Functions and Orlicz Spaces.P. Noordhoff, Groningen (1961). Zbl 0095.09103, MR 0126722 |
Reference:
|
[14] Kufner, A., John, O., Fučík, S.: Function Spaces.Monographs and Textbooks on Mechanics of Solids and Fluids. Mechanics: Analysis, Noordhoff International Publishing, Leyden; Academia, Prague (1977). Zbl 0364.46022, MR 0482102 |
Reference:
|
[15] Musielak, J.: Orlicz Spaces and Modular Spaces.Lecture Notes in Mathematics 1034, Springer, Berlin (1983). Zbl 0557.46020, MR 0724434, 10.1007/BFb0072210 |
Reference:
|
[16] Nakano, H.: Modulared Semi-Ordered Linear Spaces.Tokyo Math. Book Series 1, Maruzen, Tokyo (1950). Zbl 0041.23401, MR 0038565 |
Reference:
|
[17] Orlicz, W.: Über konjugierte Exponentenfolgen.Studia Math. German 3 (1931), 200-211. Zbl 0003.25203, 10.4064/sm-3-1-200-211 |
. |