Previous |  Up |  Next

Article

Title: Boundary value problems for the Schrödinger equation involving the Henstock-Kurzweil integral (English)
Author: Sánchez-Perales, Salvador
Author: Mendoza-Torres, Francisco J.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 70
Issue: 2
Year: 2020
Pages: 519-537
Summary lang: English
.
Category: math
.
Summary: In the present paper, we investigate the existence of solutions to boundary value problems for the one-dimensional Schrödinger equation $-y''+qy=f$, where $q$ and $f$ are Henstock-Kurzweil integrable functions on $[a,b]$. Results presented in this article are generalizations of the classical results for the Lebesgue integral. (English)
Keyword: Henstock-Kurzweil integral
Keyword: Schrödinger operator
Keyword: ${\rm ACG}_{*}$-function
Keyword: bounded variation function
MSC: 26A39
MSC: 26A45
MSC: 34B24
idZBL: 07217149
idMR: MR4111857
DOI: 10.21136/CMJ.2019.0388-18
.
Date available: 2020-06-17T12:36:26Z
Last updated: 2022-07-04
Stable URL: http://hdl.handle.net/10338.dmlcz/148243
.
Reference: [1] Bartle, R. G.: A Modern Theory of Integration.Graduate Studies in Mathematics 32, AMS, Providence (2001). Zbl 0968.26001, MR 1817647, 10.1090/gsm/032
Reference: [2] Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations.Universitext, Springer, New York (2011). Zbl 1220.46002, MR 2759829, 10.1007/978-0-387-70914-7
Reference: [3] Gordon, R. A.: The Integrals of Lebesgue, Denjoy, Perron, and Henstock.Graduate Studies in Mathematics 4, AMS, Providence (1994). Zbl 0807.26004, MR 1288751, 10.1090/gsm/004
Reference: [4] Peral, I.: Primer Curso de Ecuaciones en Derivadas Parciales.Addison Wesley, Boston (1995), Spanish.
Reference: [5] Sánchez-Perales, S.: The initial value problem for the Schrödinger equation involving the Henstock-Kurzweil integral.Rev. Unión Mat. Argent. 58 (2017), 297-306. Zbl 1382.34096, MR 3733209
Reference: [6] Swartz, C.: Norm convergence and uniform integrability for the Henstock-Kurzweil integral.Real Anal. Exch. 24 (1998), 423-426. Zbl 0943.26022, MR 1691761, 10.2307/44152964
Reference: [7] Talvila, E.: Henstock-Kurzweil Fourier transforms.Ill. J. Math. 46 (2002), 1207-1226. Zbl 1037.42007, MR 1988259, 10.1215/ijm/1258138475
.

Files

Files Size Format View
CzechMathJ_70-2020-2_14.pdf 343.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo