Previous |  Up |  Next

Article

Title: Characterizations of partial isometries and two special kinds of EP elements (English)
Author: Zhao, Ruju
Author: Yao, Hua
Author: Wei, Junchao
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 70
Issue: 2
Year: 2020
Pages: 539-551
Summary lang: English
.
Category: math
.
Summary: We give some sufficient and necessary conditions for an element in a ring to be an EP element, partial isometry, normal EP element and strongly EP element by using solutions of certain equations. (English)
Keyword: EP element
Keyword: partial isometry
Keyword: normal EP element
Keyword: strongly EP element
Keyword: solutions of equation
MSC: 15A09
MSC: 16U99
MSC: 16W10
idZBL: 07217150
idMR: MR4111858
DOI: 10.21136/CMJ.2019.0389-18
.
Date available: 2020-06-17T12:36:54Z
Last updated: 2022-07-04
Stable URL: http://hdl.handle.net/10338.dmlcz/148244
.
Reference: [1] Baksalary, O. M., Styan, G. P. H., Trenkler, G.: On a matrix decomposition of Hartwig and Spindelböck.Linear Algebra Appl. 430 (2009), 2798-2812. Zbl 1180.15004, MR 2509859, 10.1016/j.laa.2009.01.015
Reference: [2] Baksalary, O. M., Trenkler, G.: Characterizations of EP, normal, and Hermitian matrices.Linear Multilinear Algebra 56 (2008), 299-304. Zbl 1151.15023, MR 2384656, 10.1080/03081080600872616
Reference: [3] Ben-Israel, A., Greville, T. N. E.: Generalized Inverses: Theory and Applications.CMS Books in Mathematics/Ouvrages de Mathèmatiques de la SMC 15, Springer, New York (2003). Zbl 1026.15004, MR 1987382, 10.1007/b97366
Reference: [4] Chen, W.: On EP elements, normal elements and partial isometries in rings with involution.Electron. J. Linear Algebra 23 (2012), 553-561. Zbl 1266.16044, MR 2946809, 10.13001/1081-3810.1540
Reference: [5] Cheng, S., Tian, Y.: Two sets of new characterizations for normal and EP matrices.Linear Algebra Appl. 375 (2003), 181-195. Zbl 1054.15022, MR 2013464, 10.1016/S0024-3795(03)00650-5
Reference: [6] Harte, R., Mbekhta, M.: On generalized inverses in $C^{*}$-algebras.Stud. Math. 103 (1992), 71-77. Zbl 0810.46062, MR 1184103, 10.4064/sm-103-1-71-77
Reference: [7] Hartwig, R. E., Spindelböck, K.: Matrices for which $A^{*}$ and $A^{\dagger}$ commute.Linear Multilinear Algebra 14 (1983), 241-256. Zbl 0525.15006, MR 0718953, 10.1080/03081088308817561
Reference: [8] Koliha, J. J., Djordjević, D., Cvetković, D.: Moore-Penrose inverse in rings with involution.Linear Algebra Appl. 426 (2007), 371-381. Zbl 1130.46032, MR 2350664, 10.1016/j.laa.2007.05.012
Reference: [9] Mosić, D., Djordjević, D. S.: Moore-Penrose-invertible normal and Hermitian elements in rings.Linear Algebra Appl. 431 (2009), 732-745. Zbl 1186.16046, MR 2535546, 10.1016/j.laa.2009.03.023
Reference: [10] Mosić, D., Djordjević, D. S.: Partial isometries and EP elements in rings with involution.Electron. J. Linear Algebra 18 (2009), 761-772. Zbl 1192.16039, MR 2578068, 10.13001/1081-3810.1343
Reference: [11] Mosić, D., Djordjević, D. S.: Further results on partial isometries and EP elements in rings with involution.Math. Comput. Modelling 54 (2011), 460-465. Zbl 1225.15008, MR 2801901, 10.1016/j.mcm.2011.02.035
Reference: [12] Mosić, D., Djordjević, D. S.: New characterizations of EP, generalized normal and generalized Hermitian elements in rings.Appl. Math. Comput. 218 (2012), 6702-6710. Zbl 1251.15008, MR 2880325, 10.1016/j.amc.2011.12.030
Reference: [13] Mosić, D., Djordjević, D. S., Koliha, J. J.: EP elements in rings.Linear Algebra Appl. 431 (2009), 527-535. Zbl 1186.16047, MR 2535530, 10.1016/j.laa.2009.02.032
Reference: [14] Penrose, R.: A generalized inverse for matrices.Proc. Camb. Philos. Soc. 51 (1955), 406-413. Zbl 0065.24603, MR 0069793, 10.1017/S0305004100030401
Reference: [15] Xu, S., Chen, J., Benítez, J.: EP elements in rings with involution.Available at https://arxiv.org/abs/1602.08184 (2017), 18 pages.
.

Files

Files Size Format View
CzechMathJ_70-2020-2_15.pdf 260.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo