Previous |  Up |  Next

Article

Title: Noncompact perturbation of nonconvex noncompact sweeping process with delay (English)
Author: Abdo, Mohammed S.
Author: Ibrahim, Ahmed G.
Author: Panchal, Satish K.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 61
Issue: 2
Year: 2020
Pages: 165-186
Summary lang: English
.
Category: math
.
Summary: We prove an existence theorem of solutions for a nonconvex sweeping process with nonconvex noncompact perturbation in Hilbert space. We do not assume that the values of the orient field are compact. (English)
Keyword: nonconvex sweeping process
Keyword: functional differential inclusion
Keyword: uniformly $\varrho$-prox-regular set
MSC: 34A60
MSC: 34B15
MSC: 47H10
idZBL: Zbl 07285999
idMR: MR4143703
DOI: 10.14712/1213-7243.2020.014
.
Date available: 2020-10-13T13:10:01Z
Last updated: 2022-07-04
Stable URL: http://hdl.handle.net/10338.dmlcz/148287
.
Reference: [1] Abdo M. S., Ibrahim A. G., Panchal S. K.: State-dependent delayed sweeping process with a noncompact perturbation in Banach spaces.Acta Univ. Apulensis Math. Inform. 54 (2018), 139–159. MR 3830496
Reference: [2] Aitalioubrahim M.: On noncompact perturbation of nonconvex sweeping process.Comment. Math. Univ. Carolin. 53 (2012) no. 1, 65–77. MR 2880911
Reference: [3] Aubin J.-P., Cellina A.: Differential Inclusions: Set-Valued Maps and Viability Theory.Grundlehren der Mathematischen Wissenschaften, 264, Springer, Berlin, 1984. MR 0755330, 10.1007/978-3-642-69512-4
Reference: [4] Bounkhel M., Castaing C.: State dependent sweeping process in $p$-uniformly smooth and $q$-niformly convex Banach spaces.Set-Valued Var. Anal. 20 (2012), no. 2, 187–201. MR 2913675
Reference: [5] Bounkhel M., Thibault L.: Nonconvex sweeping process and prox-regularity in Hilbert space.J. Nonlinear Convex Anal. 6 (2005), no. 2, 359–374. Zbl 1086.49016, MR 2159846
Reference: [6] Castaing C., Monteiro Marques M. D. P.: Topological properties of solution sets for sweeping processes with delay.Portugal. Math. 54 (1997), no. 4, 485–507. MR 1489988
Reference: [7] Castaing C., Valadier M.: Convex Analysis and Measurable Multifunctions.Lectures Notes in Mathematics, 580, Springer, Berlin, 1977. Zbl 0346.46038, MR 0467310, 10.1007/BFb0087688
Reference: [8] Clarke F. H., Stern R. J., Wolenski P. R.: Proximal smoothness and the lower-$C^2$ property.J. Convex Anal. 2 (1995), no. 1–2, 117–144. MR 1363364
Reference: [9] Edmond J. F.: Delay perturbed sweeping process.Set-Valued Anal. 14 (2006), no. 3, 295–317. Zbl 1122.34060, MR 2252653, 10.1007/s11228-006-0021-9
Reference: [10] Edmond J. F., Thibault L.: Relaxation of an optimal control problem involving a perturbed sweeping process.Math. Program. 104 (2005), no. 2–3, Ser. B, 347–373. MR 2179241, 10.1007/s10107-005-0619-y
Reference: [11] Edmond J. F., Thibault L.: $BV$ solutions of nonconvex sweeping process differential inclusion with perturbation.J. Differential Equations 226 (2006), no. 1, 135–179. MR 2232433, 10.1016/j.jde.2005.12.005
Reference: [12] Haddad T., Thibault L.: Mixed semicontinuous perturbations of nonconvex sweeping processes.Math. Program. 123 (2010), no. 1, Ser. B, 225–240. MR 2577329, 10.1007/s10107-009-0315-4
Reference: [13] Moreau J. J.: Application of convex analysis to the treatment of elastoplastic systems.Applications of Methods of Functional Analysis to Problems in Mechanics, Lecture Notes in Mathematics, 503, Springer, Berlin, 1976, 56–89.
Reference: [14] Moreau J.-J.: Evolution problem associated with a moving convex set in Hilbert space.J. Differential Equations 26 (1977), no. 3, 347–374. MR 0508661, 10.1016/0022-0396(77)90085-7
Reference: [15] Moreau J. J.: Unilateral contact and dry friction in finite freedom dynamics.Nonsmooth Mechanics and Applications, International Centre for Mechanical Sciences (CISM), 302, Springer, Vienna, 1988, 1–82. Zbl 0703.73070
Reference: [16] Sene M., Thibault L.: Regularization of dynamical systems associated with prox-regular moving sets.J. Nonlinear Convex Anal. 15 (2014), no. 4, 647–663. MR 3222899
Reference: [17] Poliquin R. A., Rockafellar R. T., Thibault L.: Local differentiability of distance functions.Trans. Amer. Math. Soc. 352 (2000), no. 11, 5231–5249. Zbl 0960.49018, MR 1694378, 10.1090/S0002-9947-00-02550-2
Reference: [18] Thibault L.: Sweeping process with regular and nonregular sets.J. Differential Equations 193 (2003), no. 1, 1–26. Zbl 1037.34007, MR 1994056, 10.1016/S0022-0396(03)00129-3
Reference: [19] Zhu Q. J.: On the solution set of differential inclusions in Banach space.J. Differential Equations 93 (1991), no. 2, 213–237. Zbl 0735.34017, MR 1125218, 10.1016/0022-0396(91)90011-W
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_61-2020-2_5.pdf 325.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo