Title:
|
Lipschitz approximable Banach spaces (English) |
Author:
|
Godefroy, Gilles |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
61 |
Issue:
|
2 |
Year:
|
2020 |
Pages:
|
187-193 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We show the existence of Lipschitz approximable separable spaces which fail Grothendieck's approximation property. This follows from the observation that any separable space with the metric compact approximation property is Lipschitz approximable. Some related results are spelled out. (English) |
Keyword:
|
compact approximation property |
Keyword:
|
Lipschitz map |
Keyword:
|
Lipschitz-free Banach space |
MSC:
|
46B20 |
MSC:
|
47A15 |
idZBL:
|
Zbl 07286000 |
idMR:
|
MR4143704 |
DOI:
|
10.14712/1213-7243.2020.021 |
. |
Date available:
|
2020-10-13T13:11:24Z |
Last updated:
|
2022-07-04 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/148285 |
. |
Reference:
|
[1] Borel-Mathurin L.: Approximation properties and non-linear geometry of Banach spaces.Houston J. Math. 38 (2012), no. 4, 1135–1148. MR 3019026 |
Reference:
|
[2] Casazza P.: Approximation Properties.Handbook of the Geometry of Banach Spaces, Vol. 1, North-Holland, Amsterdam, 2001, pages 271–316. MR 1863695, 10.1016/S1874-5849(01)80009-7 |
Reference:
|
[3] Cho C.-M., Johnson W. B.: A characterization of subspaces $X$ of $l_p$ for which $K(X)$ is an $M$-ideal in $L(X)$.Proc. Amer. Math. Soc. 93 (1985), no. 3, 466–470. MR 0774004 |
Reference:
|
[4] Godefroy G.: A survey on Lipschitz-free Banach spaces.Comment. Math. 55 (2015), no. 2, 89–118. MR 3518958 |
Reference:
|
[5] Godefroy G.: Extensions of Lipschitz functions and Grothendieck's bounded approximation property.North-West. Eur. J. Math. 1 (2015), 1–6. MR 3417417 |
Reference:
|
[6] Godefroy G., Kalton N. J.: Lipschitz-free Banach spaces.Studia Math. 159 (2003), no. 1, 121–141. MR 2030906, 10.4064/sm159-1-6 |
Reference:
|
[7] Godefroy G., Lancien G., Zizler V.: The non-linear geometry of Banach spaces after Nigel Kalton.Rocky Mountain J. Math. 44 (2014), no. 5, 1529–1584. MR 3295641, 10.1216/RMJ-2014-44-5-1529 |
Reference:
|
[8] Godefroy G., Ozawa N.: Free Banach spaces and the approximation properties.Proc. Amer. Math. Soc. 142 (2014), no. 5, 1681–1687. MR 3168474, 10.1090/S0002-9939-2014-11933-2 |
Reference:
|
[9] Jiménez-Vargas A., Sepulcre J. M., Villegas-Vallecillos M.: Lipschitz compact operators.J. Math. Anal. Appl. 415 (2014), no. 2, 889–901. MR 3178297, 10.1016/j.jmaa.2014.02.012 |
Reference:
|
[10] Kalton N. J.: Spaces of Lipschitz and Hölder functions and their applications.Collect. Math. 55 (2004), no. 2, 171–217. MR 2068975 |
Reference:
|
[11] Kalton N. J.: The uniform structure of Banach spaces.Math. Ann. 354 (2012), no. 4, 1247–1288. MR 2992997, 10.1007/s00208-011-0743-3 |
Reference:
|
[12] Oja E.: On bounded approximation properties of Banach spaces.Banach algebras 2009, Banach Center Publ., 91, Polish Acad. Sci. Inst. Math., Warsaw, 2010, pages 219–231. MR 2777497 |
Reference:
|
[13] Pernecka E., Smith R. J.: The metric approximation property and Lipschitz-free spaces over subsets of $\mathbb{R}^n$.J. Approx. Theory 199 (2015), 29–44. MR 3389905, 10.1016/j.jat.2015.06.003 |
Reference:
|
[14] Thele R. L.: Some results on the radial projection in Banach spaces.Proc. Amer. Math. Soc. 42 (1974), 483–486. MR 0328550, 10.1090/S0002-9939-1974-0328550-1 |
Reference:
|
[15] Willis G.: The compact approximation property does not imply the approximation property.Studia Math. 103 (1992), no. 1, 99–108. MR 1184105, 10.4064/sm-103-1-99-108 |
. |