Previous |  Up |  Next

Article

Title: Lipschitz approximable Banach spaces (English)
Author: Godefroy, Gilles
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 61
Issue: 2
Year: 2020
Pages: 187-193
Summary lang: English
.
Category: math
.
Summary: We show the existence of Lipschitz approximable separable spaces which fail Grothendieck's approximation property. This follows from the observation that any separable space with the metric compact approximation property is Lipschitz approximable. Some related results are spelled out. (English)
Keyword: compact approximation property
Keyword: Lipschitz map
Keyword: Lipschitz-free Banach space
MSC: 46B20
MSC: 47A15
idZBL: Zbl 07286000
idMR: MR4143704
DOI: 10.14712/1213-7243.2020.021
.
Date available: 2020-10-13T13:11:24Z
Last updated: 2022-07-04
Stable URL: http://hdl.handle.net/10338.dmlcz/148285
.
Reference: [1] Borel-Mathurin L.: Approximation properties and non-linear geometry of Banach spaces.Houston J. Math. 38 (2012), no. 4, 1135–1148. MR 3019026
Reference: [2] Casazza P.: Approximation Properties.Handbook of the Geometry of Banach Spaces, Vol. 1, North-Holland, Amsterdam, 2001, pages 271–316. MR 1863695, 10.1016/S1874-5849(01)80009-7
Reference: [3] Cho C.-M., Johnson W. B.: A characterization of subspaces $X$ of $l_p$ for which $K(X)$ is an $M$-ideal in $L(X)$.Proc. Amer. Math. Soc. 93 (1985), no. 3, 466–470. MR 0774004
Reference: [4] Godefroy G.: A survey on Lipschitz-free Banach spaces.Comment. Math. 55 (2015), no. 2, 89–118. MR 3518958
Reference: [5] Godefroy G.: Extensions of Lipschitz functions and Grothendieck's bounded approximation property.North-West. Eur. J. Math. 1 (2015), 1–6. MR 3417417
Reference: [6] Godefroy G., Kalton N. J.: Lipschitz-free Banach spaces.Studia Math. 159 (2003), no. 1, 121–141. MR 2030906, 10.4064/sm159-1-6
Reference: [7] Godefroy G., Lancien G., Zizler V.: The non-linear geometry of Banach spaces after Nigel Kalton.Rocky Mountain J. Math. 44 (2014), no. 5, 1529–1584. MR 3295641, 10.1216/RMJ-2014-44-5-1529
Reference: [8] Godefroy G., Ozawa N.: Free Banach spaces and the approximation properties.Proc. Amer. Math. Soc. 142 (2014), no. 5, 1681–1687. MR 3168474, 10.1090/S0002-9939-2014-11933-2
Reference: [9] Jiménez-Vargas A., Sepulcre J. M., Villegas-Vallecillos M.: Lipschitz compact operators.J. Math. Anal. Appl. 415 (2014), no. 2, 889–901. MR 3178297, 10.1016/j.jmaa.2014.02.012
Reference: [10] Kalton N. J.: Spaces of Lipschitz and Hölder functions and their applications.Collect. Math. 55 (2004), no. 2, 171–217. MR 2068975
Reference: [11] Kalton N. J.: The uniform structure of Banach spaces.Math. Ann. 354 (2012), no. 4, 1247–1288. MR 2992997, 10.1007/s00208-011-0743-3
Reference: [12] Oja E.: On bounded approximation properties of Banach spaces.Banach algebras 2009, Banach Center Publ., 91, Polish Acad. Sci. Inst. Math., Warsaw, 2010, pages 219–231. MR 2777497
Reference: [13] Pernecka E., Smith R. J.: The metric approximation property and Lipschitz-free spaces over subsets of $\mathbb{R}^n$.J. Approx. Theory 199 (2015), 29–44. MR 3389905, 10.1016/j.jat.2015.06.003
Reference: [14] Thele R. L.: Some results on the radial projection in Banach spaces.Proc. Amer. Math. Soc. 42 (1974), 483–486. MR 0328550, 10.1090/S0002-9939-1974-0328550-1
Reference: [15] Willis G.: The compact approximation property does not imply the approximation property.Studia Math. 103 (1992), no. 1, 99–108. MR 1184105, 10.4064/sm-103-1-99-108
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_61-2020-2_6.pdf 247.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo