Previous |  Up |  Next

Article

Title: On congruence permutable $G$-sets (English)
Author: Nagy, Attila
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 61
Issue: 2
Year: 2020
Pages: 139-145
Summary lang: English
.
Category: math
.
Summary: An algebraic structure is said to be congruence permutable if its arbitrary congruences $\alpha$ and $\beta$ satisfy the equation $\alpha \circ \beta =\beta \circ \alpha$, where $\circ$ denotes the usual composition of binary relations. To an arbitrary $G$-set $X$ satisfying $G\cap X=\emptyset$, we assign a semigroup $(G,X,0)$ on the base set $G\cup X\cup \{ 0\}$ containing a zero element $0\notin G\cup X$, and examine the connection between the congruence permutability of the $G$-set $X$ and the semigroup $(G,X,0)$. (English)
Keyword: $G$-set
Keyword: congruence permutable algebras
Keyword: semigroup
MSC: 20E15
MSC: 20M05
idZBL: Zbl 07285996
idMR: MR4143700
DOI: 10.14712/1213-7243.2020.019
.
Date available: 2020-10-13T13:05:58Z
Last updated: 2022-07-04
Stable URL: http://hdl.handle.net/10338.dmlcz/148288
.
Reference: [1] Clifford A. H., Preston G. B.: The Algebraic Theory of Semigroups, Vol. I.Mathematical Surveys, No. 7, American Mathematical Society, Providence, 1961. MR 0132791
Reference: [2] Deák A., Nagy A.: Finite permutable Putcha semigroups.Acta Sci. Math. (Szeged) 76 (2010), no. 3–4, 397–410. MR 2789677
Reference: [3] Hamilton H.: Permutability of congruences on commutative semigroups.Semigroup Forum 10 (1975/76), no. 1, 55–66. MR 0387455, 10.1007/BF02194872
Reference: [4] McKenzien R. N., McNulty G. F., Taylor W. F.: Algebras, Lattices, Varieties, Vol. I.The Wadsworth & Brooks/Cole Mathematics Series, Wadsworth & Brooks/Cole Advanced Books & Software, Monterey, CA, 1987. MR 0883644
Reference: [5] Nagy A.: Special Classes of Semigroups.Advances in Mathematics (Dordrecht), 1, Kluwer Academic Publishers, Dordrecht, 2001. MR 1777265
Reference: [6] Pálfy P. P., Pudlák P.: Congruence lattices of finite algebras and intervals in subgroup lattices of finite groups.Algebra Universalis 11 (1980), no. 1, 22–27. MR 0593011, 10.1007/BF02483080
Reference: [7] Pálfy P. P., Saxl J.: Congruence lattices of finite algebras and factorizations of groups.Comm. Algebra 18 (1990), no. 9, 2783–2790. MR 1063342, 10.1080/00927879008824052
Reference: [8] Vernikov B. M.: On congruences of $G$-sets.Comment. Math. Univ. Carolin. 38 (1997), no. 3, 601–611. MR 1485081
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_61-2020-2_2.pdf 233.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo