Previous |  Up |  Next

Article

Title: Roughness in $G$-graphs (English)
Author: Onagh, Bibi N.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 61
Issue: 2
Year: 2020
Pages: 147-154
Summary lang: English
.
Category: math
.
Summary: $G$-graphs are a type of graphs associated to groups, which were proposed by A. Bretto and A. Faisant (2005). In this paper, we first give some theorems regarding $G$-graphs. Then we introduce the notion of rough $G$-graphs and investigate some important properties of these graphs. (English)
Keyword: coset
Keyword: $G$-graph
Keyword: rough set
Keyword: group
Keyword: normal subgroup
Keyword: lower approximation
Keyword: upper approximation
MSC: 03E75
MSC: 03E99
MSC: 05C25
idZBL: Zbl 07285997
idMR: MR4143701
DOI: 10.14712/1213-7243.2020.016
.
Date available: 2020-10-13T13:07:18Z
Last updated: 2022-07-04
Stable URL: http://hdl.handle.net/10338.dmlcz/148289
.
Reference: [1] Badaoui M., Bretto A., Ellison D., Mourad B.: On constructing expander families of $G$-graphs.Ars Math. Contemp. 15 (2018), no. 2, 425–440. MR 3880000, 10.26493/1855-3974.1537.97c
Reference: [2] Bretto A., Faisant A.: Another way for associating a graph to a group.Math. Slovaca 55 (2005), no. 1, 1–8. MR 2178531
Reference: [3] Bretto A., Faisant A.: Cayley graphs and $G$-graphs: some applications.J. Symbolic Comput. 46 (2011), no. 12, 1403–1412. MR 2861005, 10.1016/j.jsc.2011.08.016
Reference: [4] Bretto A., Faisant A., Gillibert L.: $G$-graphs: a new representation of groups.J. Symbolic Comput. 42 (2007), no. 5, 549–560. MR 2322473, 10.1016/j.jsc.2006.08.002
Reference: [5] Bretto A., Gilibert L.: $G$-graphs for the cage problem: a new upper bound.International Symp. on Symbolic and Algebraic Computation, ISSAC 2007, ACM, New York, 2007, pages 49–53. MR 2396183
Reference: [6] Bretto A., Gillibert L.: $G$-graphs: an efficient tool for constructing symmetric and semisymmetric graphs.Discrete Appl. Math. 156 (2008), no. 14, 2719–2739. MR 2451092, 10.1016/j.dam.2007.11.011
Reference: [7] Bretto A., Jaulin C., Gillibert L., Laget B.: A new property of Hamming graphs and mesh of $d$-ary trees.8th Asian Symposium, ASCM 2007, Singapore, 2007, Lecture Notes in Artificial Intelligence, Subseries Lecture Notes in Computer Science 5081, 2008, pages 139–150.
Reference: [8] Cayley A.: Desiderata and suggestions: No. 2. The theory of groups: graphical representations.Amer. J. Math. 1 (1878), no. 2, 174–176. MR 1505159, 10.2307/2369306
Reference: [9] Cayley A.: On the theory of groups.Amer. J. Math. 11 (1889), no. 2, 139–157. MR 1505501, 10.2307/2369415
Reference: [10] Cheng W., Mo Z.-W., Wang J.: Notes on: “The lower and upper approximations in a fuzzy group" and “Rough ideals in semigroups".Inform. Sci. 177 (2007), no. 22, 5134–5140. MR 2362816, 10.1016/j.ins.2006.12.006
Reference: [11] Kuroki N., Wang P. P.: The lower and upper approximations in a fuzzy group.Inform. Sci. 90 (1996), no. 1–4, 203–220. MR 1388421, 10.1016/0020-0255(95)00282-0
Reference: [12] Pawlak Z.: Rough sets.Internat. J. Comput. Inform. Sci. 11 (1982), no. 5, 341–356. MR 0703291, 10.1007/BF01001956
Reference: [13] Shahzamanian M. H., Shirmohammadi M., Davvaz B.: Roughness in Cayley graphs.Inform. Sci. 180 (2010), no. 17, 3362–3372. MR 2659052, 10.1016/j.ins.2010.05.011
Reference: [14] West D. B.: Introduction to Graph Theory.Prentice Hall, Upper Saddle River, 1996. Zbl 1121.05304, MR 1367739
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_61-2020-2_3.pdf 381.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo