Title:
|
Roughness in $G$-graphs (English) |
Author:
|
Onagh, Bibi N. |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
61 |
Issue:
|
2 |
Year:
|
2020 |
Pages:
|
147-154 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
$G$-graphs are a type of graphs associated to groups, which were proposed by A. Bretto and A. Faisant (2005). In this paper, we first give some theorems regarding $G$-graphs. Then we introduce the notion of rough $G$-graphs and investigate some important properties of these graphs. (English) |
Keyword:
|
coset |
Keyword:
|
$G$-graph |
Keyword:
|
rough set |
Keyword:
|
group |
Keyword:
|
normal subgroup |
Keyword:
|
lower approximation |
Keyword:
|
upper approximation |
MSC:
|
03E75 |
MSC:
|
03E99 |
MSC:
|
05C25 |
idZBL:
|
Zbl 07285997 |
idMR:
|
MR4143701 |
DOI:
|
10.14712/1213-7243.2020.016 |
. |
Date available:
|
2020-10-13T13:07:18Z |
Last updated:
|
2022-07-04 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/148289 |
. |
Reference:
|
[1] Badaoui M., Bretto A., Ellison D., Mourad B.: On constructing expander families of $G$-graphs.Ars Math. Contemp. 15 (2018), no. 2, 425–440. MR 3880000, 10.26493/1855-3974.1537.97c |
Reference:
|
[2] Bretto A., Faisant A.: Another way for associating a graph to a group.Math. Slovaca 55 (2005), no. 1, 1–8. MR 2178531 |
Reference:
|
[3] Bretto A., Faisant A.: Cayley graphs and $G$-graphs: some applications.J. Symbolic Comput. 46 (2011), no. 12, 1403–1412. MR 2861005, 10.1016/j.jsc.2011.08.016 |
Reference:
|
[4] Bretto A., Faisant A., Gillibert L.: $G$-graphs: a new representation of groups.J. Symbolic Comput. 42 (2007), no. 5, 549–560. MR 2322473, 10.1016/j.jsc.2006.08.002 |
Reference:
|
[5] Bretto A., Gilibert L.: $G$-graphs for the cage problem: a new upper bound.International Symp. on Symbolic and Algebraic Computation, ISSAC 2007, ACM, New York, 2007, pages 49–53. MR 2396183 |
Reference:
|
[6] Bretto A., Gillibert L.: $G$-graphs: an efficient tool for constructing symmetric and semisymmetric graphs.Discrete Appl. Math. 156 (2008), no. 14, 2719–2739. MR 2451092, 10.1016/j.dam.2007.11.011 |
Reference:
|
[7] Bretto A., Jaulin C., Gillibert L., Laget B.: A new property of Hamming graphs and mesh of $d$-ary trees.8th Asian Symposium, ASCM 2007, Singapore, 2007, Lecture Notes in Artificial Intelligence, Subseries Lecture Notes in Computer Science 5081, 2008, pages 139–150. |
Reference:
|
[8] Cayley A.: Desiderata and suggestions: No. 2. The theory of groups: graphical representations.Amer. J. Math. 1 (1878), no. 2, 174–176. MR 1505159, 10.2307/2369306 |
Reference:
|
[9] Cayley A.: On the theory of groups.Amer. J. Math. 11 (1889), no. 2, 139–157. MR 1505501, 10.2307/2369415 |
Reference:
|
[10] Cheng W., Mo Z.-W., Wang J.: Notes on: “The lower and upper approximations in a fuzzy group" and “Rough ideals in semigroups".Inform. Sci. 177 (2007), no. 22, 5134–5140. MR 2362816, 10.1016/j.ins.2006.12.006 |
Reference:
|
[11] Kuroki N., Wang P. P.: The lower and upper approximations in a fuzzy group.Inform. Sci. 90 (1996), no. 1–4, 203–220. MR 1388421, 10.1016/0020-0255(95)00282-0 |
Reference:
|
[12] Pawlak Z.: Rough sets.Internat. J. Comput. Inform. Sci. 11 (1982), no. 5, 341–356. MR 0703291, 10.1007/BF01001956 |
Reference:
|
[13] Shahzamanian M. H., Shirmohammadi M., Davvaz B.: Roughness in Cayley graphs.Inform. Sci. 180 (2010), no. 17, 3362–3372. MR 2659052, 10.1016/j.ins.2010.05.011 |
Reference:
|
[14] West D. B.: Introduction to Graph Theory.Prentice Hall, Upper Saddle River, 1996. Zbl 1121.05304, MR 1367739 |
. |