[1] Alexandrov, M., Schwarz, A., Zaboronsky, O., Kontsevich, M.: 
The geometry of the master equation and topological quantum field theory. Internat. J. Modern Phys. A 12 (5) (1997), 1405–1429,  
https://arxiv.org/abs/hep-th/9502010, arXiv:hep-th/9502010,  
https://doi.org/10.1142/S0217751X97001031 DOI 10.1142/S0217751X97001031 
[2] Berezin, F.A., Leites, D.A.: 
Supermanifolds. Dokl. Akad. Nauk SSSR 224 (3) (1975), 505–508, (Russian). 
MR 0402795 
[4] Carmeli, C., Caston, L., Fioresi, R.: 
Mathematical foundations of supersymmetry. EMS Series of Lectures in Mathematics, Zürich, 2011, xiv+287 pp., ISBN: 978-3-03719-097-5. 
MR 2840967 | 
Zbl 1226.58003 
[5] DeWitt, B.: 
Supermanifolds. second ed., Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 1992, xviii+407 pp. ISBN: 0-521-41320-6; 0-521-42377-5. 
MR 1172996 
[6] Duplij, S., Siegel, W., Bagger, J. (editors): 
Concise encyclopedia of supersymmetry and noncommutative structures in mathematics and physics. Kluwer Academic Publishers, Dordrecht, 2004, iv+561 pp. ISBN: 1-4020-1338-8. 
MR 2051764 
[20] Manin, Y.I.: 
Gauge field theory and complex geometry. second ed., Fundamental Principles of Mathematical Sciences, vol. 289, Springer-Verlag, Berlin, 1997, xii+346 pp. ISBN: 3-540-61378-1. 
MR 1632008 | 
Zbl 0884.53002 
[21] Monterde, J., Sánchez-Valenzuela, O.A.: 
The exterior derivative as a Killing vector field. Israel J. Math. 93 (1997), 157–170. 
DOI 10.1007/BF02761099 | 
MR 1380639 
[22] Mosman, E.A., Sharapov, A.A.: 
Quasi-Riemannian structures on supermanifolds and characteristic classes. Russian Phys. J. 54 (6) (2011), 668–672. 
MR 2906709 
[23] Roytenberg, D.: 
On the structure of graded symplectic supermanifolds and Courant algebroids. Quantization, Poisson brackets and beyond, vol. 315, Amer. Math. Soc., Providence, RI, Contemp. Math. ed., 2002, (Manchester, 2001), 169–185,  
https://arxiv.org/abs/math/0203110, arXiv:math/0203110. 
MR 1958835 | 
Zbl 1036.53057 
[29] Varadarajan, V.S.: 
Supersymmetry for mathematicians: an introduction. Courant Lecture Notes in Mathematics, 11. New York University, Courant Institute of Mathematical Sciences, New York ed., American Mathematical Society, Providence, RI, 2004, viii+300 pp. ISBN: 0-8218-3574-2. 
MR 2069561 | 
Zbl 1142.58009 
[30] Voronov, Th.: 
Graded manifolds and Drinfeld doubles for Lie bialgebroids, Quantization, Poisson brackets and beyond. Contemp. Math., vol. 315, Amer. Math. Soc., Providence, RI, 2002,  
https://arxiv.org/abs/math/0105237, arXiv:math/0105237. 
DOI 10.1090/conm/315/05478 | 
MR 1958834 
[31] Voronov, Th.: 
Geometric integration theory on supermanifolds. Classic Reviews in Mathematics $\&$ Mathematical Physics ed., Cambridge Scientific Publishers, 2014, 150 pp., ISBN: 978-1-904868-82-8. 
MR 1202882