Previous |  Up |  Next

Article

Title: The reduced ideals of a special order in a pure cubic number field (English)
Author: Azizi, Abdelmalek
Author: Benamara, Jamal
Author: Ismaili, Moulay Chrif
Author: Talbi, Mohammed
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 56
Issue: 3
Year: 2020
Pages: 171-182
Summary lang: English
.
Category: math
.
Summary: Let $K=\mathbb{Q}(\theta )$ be a pure cubic field, with $\theta ^3=D$, where $D$ is a cube-free integer. We will determine the reduced ideals of the order $\mathcal{O}=\mathbb{Z}[\theta ]$ of $K$ which coincides with the maximal order of $K$ in the case where $D$ is square-free and $\not\equiv\pm1\pmod9$. (English)
Keyword: cubic field
Keyword: reduced ideal
MSC: 11R16
MSC: 11R29
MSC: 11T71
idZBL: Zbl 07250677
idMR: MR4156443
DOI: 10.5817/AM2020-3-171
.
Date available: 2020-09-02T08:52:41Z
Last updated: 2020-11-23
Stable URL: http://hdl.handle.net/10338.dmlcz/148294
.
Reference: [1] Alaca, S., Williams, K.S.: Introductory algebraic number theory.Cambridge University Press, Cambridge, UK, 2004. MR 2031707
Reference: [2] Buchmann, J.A., Scheidler, R., Williams, H.C.: Implementation of a key exchange protocol using real quadratic fields.Advances in Cryptography–EUROCRYPT'90. EUROCRYPT 1990. Lecture Notes in Computer Science (Damgård, I.B., ed.), vol. 473, Springer, Berlin, Heidelberg, 1991, pp. 98–109. MR 1102474
Reference: [3] Buchmann, J.A., Williams, H.C.: A key-exchange system based on imaginary quadratic fields.J. Cryptology 1 (1988), 107–118. MR 0972575, 10.1007/BF02351719
Reference: [4] Buchmann, J.A., Williams, H.C.: On the infrastructure of the principal ideal class of an algebraic number field of unit rank one.Math. Comp. 50 (182) (1988), 569–579. MR 0929554, 10.1090/S0025-5718-1988-0929554-6
Reference: [5] Buchmann, J.A., Williams, H.C.: A sub exponential algorithm for the determination of class groups and regulators of algebraic number fields.Seminaire de Theorie des Nombres, Paris 1988–1989, Progr. Math., vol. 91, Birkhauser Boston, Boston, MA, 1990, pp. 27–41. MR 1104698
Reference: [6] Cohen, H.: A course in computational algebraic number theory.Springer–Verlag, 1996. MR 1228206
Reference: [7] Jacobs, G.T.: Reduced ideals and periodic sequences in pure cubic fields.Ph.D. thesis, University of North Texas, 2015, August 2015, https://digital.library.unt.edu/ark:/67531/metadc804842. MR 3503469
Reference: [8] Mollin, R.: Quadratics.CRC Press, Inc., Boca Raton, Florida, 1996. Zbl 0888.11041, MR 1383823
Reference: [9] Neukirch, J.: Algebraic Number Theory.Springer–Verlag Berlin, Heidelberg, 1999. Zbl 0956.11021, MR 1697859
Reference: [10] Payan, J.: Sur le groupe des classes d’un corps quadratique.Cours de l'institut Fourier 7 (1972), 2–30.
Reference: [11] Prabpayak, C.: Orders in pure cubic number fields.Ph.D. thesis, Univ. Graz. Grazer Math. Ber. 361, 2014. MR 3364308
.

Files

Files Size Format View
ArchMathRetro_056-2020-3_4.pdf 563.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo