Previous |  Up |  Next

# Article

Full entry | PDF   (0.5 MB)
Keywords:
operator Gâteaux differentiable functions; integral inequalities; Hermite-Hadamard inequality; Féjer’s inequalities; weighted integral means
Summary:
Let $f$ be a continuous function on $I$ and $A$, $B\in \mathcal{SA}_{I}\left( H\right)$, the convex set of selfadjoint operators with spectra in $I$. If $A\neq B$ and $f$, as an operator function, is Gateaux differentiable on \begin{equation*} [ A,B] :=\left\{ ( 1-t) A+tB\mid t\in \left[ 0,1\right] \right\}\,, \end{equation*} while $p\colon \left[ 0,1\right] \rightarrow \mathbb{R}$ is Lebesgue integrable, then we have the inequalities \begin{align*} \Big\Vert \int_{0}^{1}p\left( \tau \right)& f\left( \left( 1-\tau \right) A+\tau B\right) d\tau -\int_{0}^{1}p\left( \tau \right) \,d\tau \int_{0}^{1}f\left( \left( 1-\tau \right) A+\tau B\right)\, d\tau \Big\Vert \\ & \leq \int_{0}^{1}\tau ( 1-\tau) \Big\vert \frac{\int_{\tau }^{1}p\left( s\right)\, ds}{1-\tau }-\frac{\int_{0}^{\tau }p\left( s\right)\, ds}{\tau }\Big\vert \left\Vert \nabla f_{\left( 1-\tau \right) A+\tau B}\left( B-A\right) \right\Vert \,d\tau \\ & \leq \frac{1}{4}\int_{0}^{1}\Big\vert \frac{\int_{\tau }^{1}p\left( s\right)\, ds}{1-\tau }-\frac{\int_{0}^{\tau }p\left( s\right)\, ds}{\tau } \Big\vert \left\Vert \nabla f_{\left( 1-\tau \right) A+\tau B}\left( B-A\right) \right\Vert\, d\tau\,, \end{align*} where $\nabla f$ is the Gateaux derivative of $f$.
References:
[1] Agarwal, R.P., Dragomir, S.S.: A survey of Jensen type inequalities for functions of selfadjoint operators in Hilbert spaces. Comput. Math. Appl. 59 (12) (2010), 3785–3812. DOI 10.1016/j.camwa.2010.04.014 | MR 2651854
[2] Bacak, V., Vildan, T., Türkmen, R.: Refinements of Hermite-Hadamard type inequalities for operator convex functions. J. Inequal. Appl. 2013 (262) (2013), 10 pp. MR 3068637
[3] Darvish, V., Dragomir, S.S., Nazari, H.M., Taghavi, A.: Some inequalities associated with the Hermite-Hadamard inequalities for operator $h$-convex functions. Acta Comment. Univ. Tartu. Math. 21 (2) (2017), 287–297. MR 3745136
[4] Dragomir, S.S.: Hermite-Hadamard’s type inequalities for operator convex functions. Appl. Math. Comput. 218 (3) (2011), 766–772. MR 2831305
[5] Dragomir, S.S.: Operator Inequalities of the Jensen, Čebyšev and Grüss Type. Springer Briefs in Mathematics. Springer, New York, 2012. MR 2866026
[6] Dragomir, S.S.: Bounds for the difference between weighted and integral means of operator convex function. RGMIA Res. Rep. Coll. 22 (2019), 14 pp., Art. 97, [Online s http://rgmia.org/papers/v22/v22a97.pdf]
[7] Dragomir, S.S.: Reverses of operator Féjer’s inequalities. RGMIA Res. Rep. Coll. 22 (2019), 14 pp., Art. 91, [Online http://rgmia.org/papers/v22/v22a91.pdf]
[8] Dragomir, S.S.: Some Hermite-Hadamard type inequalities for operator convex functions and positive maps. Spec. Matrices 7 (2019), 38–51, Preprint RGMIA Res. Rep. Coll. 19 (2016), Art. 80. [Online http://rgmia.org/papers/v19/v19a80.pdf] DOI 10.1515/spma-2019-0005 | MR 3940941
[9] Furuta, T., Mićić Hot, J., Pečarić, J., Seo, Y.: Mond-Pečarić Method in Operator Inequalities. Inequalities for Bounded Selfadjoint Operators on a Hilbert Space. Element, Zagreb, 2005. MR 3026316
[10] Ghazanfari, A.G.: The Hermite-Hadamard type inequalities for operator $s$-convex functions. J. Adv. Res. Pure Math. 6 (3) (2014), 52–61. DOI 10.5373/jarpm.1876.110613 | MR 3239991
[11] Ghazanfari, A.G.: Hermite-Hadamard type inequalities for functions whose derivatives are operator convex. Complex Anal. Oper. Theory 10 (8) (2016), 1695–1703. DOI 10.1007/s11785-016-0542-7 | MR 3558363
[12] Han, J., Shi, J.: Refinements of Hermite-Hadamard inequality for operator convex function. J. Nonlinear Sci. Appl. 10 (11) (2017), 6035–6041. DOI 10.22436/jnsa.010.11.38 | MR 3738820
[13] Li, B.: Refinements of Hermite-Hadamard’s type inequalities for operator convex functions. Int. J. Contemp. Math. Sci. 8 (9–12) (2013), 463–467. DOI 10.12988/ijcms.2013.13046 | MR 3106565
[14] Pedersen, G.K.: Operator differentiable functions. Publ. Res. Inst. Math. Sci. 36 (1) (2000), 139–157. DOI 10.2977/prims/1195143229 | MR 1749015
[15] Taghavi, A., Darvish, V., Nazari, H.M., Dragomir, S.S.: Hermite-Hadamard type inequalities for operator geometrically convex functions. Monatsh. Math. 181 (1) (2016), 187–203. DOI 10.1007/s00605-015-0816-6 | MR 3535913
[16] Vivas Cortez, M., Hernández, J.E.H.: On some new generalized Hermite-Hadamard-Fejér inequalities for product of two operator $h$-convex functions. Appl. Math. Inf. Sci. 11 (4) (2017), 983–992. DOI 10.18576/amis/110405 | MR 3677622
[17] Vivas Cortez, M., Hernández, J.E.H.: Refinements for Hermite-Hadamard type inequalities for operator $h$-convex function. Appl. Math. Inf. Sci. 11 (5) (2017), 1299–1307. DOI 10.18576/amis/110507 | MR 3704419
[18] Vivas Cortez, M., Hernández, J.E.H., Azócar, L.A.: Some new generalized Jensen and Hermite-Hadamard inequalities for operator $h$-convex functions. Appl. Math. Inf. Sci. 11 (2) (2017), 383–392. DOI 10.18576/amis/110205 | MR 3704419
[19] Wang, S.-H.: Hermite-Hadamard type inequalities for operator convex functions on the co-ordinates. J. Nonlinear Sci. Appl. 10 (3) (2017), 1116–1125. DOI 10.22436/jnsa.010.03.22 | MR 3646673
[20] Wang, S.-H.: New integral inequalities of Hermite-Hadamard type for operator m-convex and $(\alpha ,m)$-convex functions. J. Comput. Anal. Appl. 22 (4) (2017), 744–753. MR 3616847

Partner of