Previous |  Up |  Next


global envelope test; groups comparison; permutation test; Europe; fiscal decentralization; nonparametrical methods
A new functional ANOVA test, with a graphical interpretation of the result, is presented. The test is an extension of the global envelope test introduced by Myllymäki et al. (2017, Global envelope tests for spatial processes, J. R. Statist. Soc. B 79, 381-404, doi: 10.1111/rssb.12172). The graphical interpretation is realized by a global envelope which is drawn jointly for all samples of functions. If a mean function computed from the empirical data is out of the given envelope, the null hypothesis is rejected with the predetermined significance level $\alpha$. The advantages of the proposed one-way functional ANOVA are that it identifies the domains of the functions which are responsible for the potential rejection. We introduce two versions of this test: the first gives a graphical interpretation of the test results in the original space of the functions and the second immediately offers a post-hoc test by identifying the significant pair-wise differences between groups. The proposed tests rely on discretization of the functions, therefore the tests are also applicable in the multidimensional ANOVA problem. In the empirical part of the article, we demonstrate the use of the method by analyzing fiscal decentralization in European countries.
[1] Abramovich, F., Angelini, C.: Testing in mixed-effects FANOVA models. J. Statist. Planning Inference 136 (2006), 4326-4348. DOI 10.1016/j.jspi.2005.06.002 | MR 2323419
[2] Ackerman, B.: The rise of world constitutionalism. Virginia Law Rev. 83 (1997), 771-797. DOI 10.2307/1073748
[3] Alesina, A., Spolaore, E.: On the number and size of nations. Quarterly J. Econom. 112 (1997), 1027-1056. DOI 10.1162/003355300555411
[4] Arzaghi, M., Henderson, J. V.: Why countries are fiscally decentralizing. J. Public Econom. 89 (2005), 1157-1189. DOI 10.1016/j.jpubeco.2003.10.009
[5] Bolton, P., Roland, G.: The breakup of nations: A political economy analysis. Quarterly J. Econom. 112 (1997), 1057-1090. DOI 10.1162/003355300555420
[6] Cerniglia, F.: Decentralization in the public sector: quantitative aspects in federal and unitary countries. J. Pol. Model. 25 (2003), 749-776. DOI 10.1016/s0161-8938(03)00069-3
[7] Choi, H., Reimherr, M.: A geometric approach to confidence regions and bands for functional parameters. J. Royal Statist. Soc.: Series B (Statist. Methodology) 80 (2018), 239-260. DOI 10.1111/rssb.12239 | MR 3744720
[8] Cox, D. D., Lee, J. S.: Pointwise testing with functional data using the Westfall-Young randomization method. Biometrika 95 (2008), 621-634. DOI 10.1093/biomet/asn021 | MR 2443179
[9] Cuesta-Albertos, J., Febrero-Bande, M.: A simple multiway ANOVA for functional data. Test 19 (2010), 537-557. DOI 10.1007/s11749-010-0185-3 | MR 2746001
[10] Cuevas, A., Febrero, M., Fraiman, R.: An anova test for functional data. Computat. Statist. Data Analysis 47 (2004), 111-122. DOI 10.1016/j.csda.2003.10.021 | MR 2087932
[11] Ermini, B., santolini, R.: does globalization matter on fiscal decentralization? New evidence from the OECD. Global Econom. Rev. 43 (2014), 153-183. DOI 10.1080/1226508x.2014.920240
[12] 2018, Eurostat: Government revenue, Expenditure and Main Aggregates (gov_10a_main).
[13] Febrero-Bande, M., Oviedo de la Fuente, M.: Statistical computing in functional data analysis: The R package fda.usc. J. Statist. Software 51 (2012), 1-28. DOI 10.18637/jss.v051.i04
[14] Ferraty, F., Vieu, P., Viguier-Pla, S.: Factor-based comparison of groups of curves. Computat. Statist. Data Analysis 51 (2007), 4903-4910. DOI 10.1016/j.csda.2006.10.001 | MR 2364548
[15] Górecki, T., Smaga, L.: A comparison of tests for the one-way ANOVA problem for functional data. Comput. Statist. 30 (2015), 987-1010. DOI 10.1007/s00180-015-0555-0 | MR 3433439
[16] Górecki, T., Smaga, L.: fdANOVA: Analysis of Variance for Univariate and Multivariate Functional Data, R package version 0.1.0, 2017. MR 3953673
[17] Hahn, U.: A studentized permutation test for the comparison of spatial point patterns. J. Amer. Statist. Assoc. 107 (2012), 754-764. DOI 10.1080/01621459.2012.688463 | MR 2980082
[18] Loosmore, N. B., Ford, E. D.: Statistical inference using the G or K point pattern spatial statistics. Ecology 87 (2006), 1925-1931. DOI 10.1890/0012-9658(2006)87[1925:SIUTGO]2.0.CO;2
[19] Mrkvička, T., Myllymäki, M., Hahn, U.: Multiple Monte Carlo testing, with applications in spatial point processes. Statist. Comput. 27 (2017), 1239-1255. DOI 10.1007/s11222-016-9683-9 | MR 3647095
[20] Myllymäki, M., Mrkvička, T.: GET: Global envelopes in R. arXiv:1911.06583 stat.ME, 2019.
[21] Myllymäki, M., Mrkvička, T., Grabarnik, P., Seijo, H., Hahn, U.: Global envelope tests for spatial processes. J. Royal Statist. Soc. B 79 (2017), 381-404. DOI 10.1111/rssb.12172 | MR 3611751
[22] J., N.-N. Narisetty V., Nair: Extremal depth for functional data and applications. J. Amer. Statist. Assoc. 111 (2016), 1705-1714. DOI 10.1080/01621459.2015.1110033 | MR 3601729
[23] Nichols, T. E.., Holmes, E.: Nonparametric permutation tests for functional neuroimaging: A primer with examples. Human Brain M 15 (2001), 1-25. DOI 10.1002/hbm.1058
[24] Oates, Wallace, E., E: Toward A second-generation theory of fiscal federalism. Int. Tax Public Finance 12 (2005), 349-373. DOI 10.1007/s10797-005-1619-9
[25] Pantazis, D., Nichols, T. E., Baillet, S., Leahya, R. M.: A comparison of random field theory and permutation methods for the statistical analysis of MEG data. Neuroi 25 (2005), 383-394. DOI 10.1016/j.neuroimage.2004.09.040
[26] Pini, A., Vantini, S., Colosimo, B. M., Grasso, M.: Domain-selective functional analysis of variance for supervised statistical profile monitoring of signal data. J. Royal Statist. Soc.: Series C (Appl. Statist.) 67 (2001), 55-81. DOI 10.1111/rssc.12218 | MR 3758755
[27] Team, R Core: R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing. Vienna 2019.
[28] Ramsay, J., Silverman, B.: Functional Data Analysis. Second edition. Springer Series in Statistics, Springer 2006. DOI 10.1007/978-1-4757-7107-7 | MR 2168993
[29] Rodrik, D.: Why do more open economies have bigger governments?. J. Polit. Economy 106 (1998), 997-1032. DOI 10.1086/250038
[30] Sedova, J., Lipovska, H., Fischer: Fiscal autonomy in the secessionist regions. In: Current Trends in Public Sector Research, Masaryk University, Brno 2017.
[31] Spahn, P. B.: Contract Federalims. Edward Elgar Publishing Limited, Book Section 7, Cheltenham 2015, pp. 144-160.
[32] Stegarescu, D.: Public sector decentralisation: Measurement concepts and recent international trends. Fiscal Stud. 26 (2005), 301-333. DOI 10.1111/j.1475-5890.2005.00014.x
[33] Stegarescu, D.: The effects of economic and political integration on fiscal decentralization: Evidence from OECD countries. Canadian J. Econom. / Revue Canadienne d'Economique 42 (2009), 694-718. DOI 10.1111/j.1540-5982.2009.01524.x
[34] Vo, D. H.: New Fiscal Decentralization Indices. The University of Western Australia Discussion Paper 08.14, 93, 2008.
[35] Vo, D. H.: The economics of fiscal decentralization. J. Econom. Surveys 24 (2010), 657-679. DOI 10.1111/j.1467-6419.2009.00600.x
[36] Vsevolozhskaya, O., Greenwood, M., Holodov, D.: Pairwise comparison of treatment levels in functional analysis of variance with application to erythrocyte hemolysis. Ann. Appl. Statist. 8 (2014), 905-925. DOI 10.1214/14-aoas723 | MR 3262539
[37] Zhang, J.-T.: Analysis of Variance for the functional data. Chapman and Hall, 2014. DOI 10.1201/b15005
Partner of
EuDML logo