Previous |  Up |  Next

Article

Title: A one-way ANOVA test for functional data with graphical interpretation (English)
Author: Mrkvička, Tomáš
Author: Myllymäki, Mari
Author: Jílek, Milan
Author: Hahn, Ute
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 56
Issue: 3
Year: 2020
Pages: 432-458
Summary lang: English
.
Category: math
.
Summary: A new functional ANOVA test, with a graphical interpretation of the result, is presented. The test is an extension of the global envelope test introduced by Myllymäki et al. (2017, Global envelope tests for spatial processes, J. R. Statist. Soc. B 79, 381-404, doi: 10.1111/rssb.12172). The graphical interpretation is realized by a global envelope which is drawn jointly for all samples of functions. If a mean function computed from the empirical data is out of the given envelope, the null hypothesis is rejected with the predetermined significance level $\alpha$. The advantages of the proposed one-way functional ANOVA are that it identifies the domains of the functions which are responsible for the potential rejection. We introduce two versions of this test: the first gives a graphical interpretation of the test results in the original space of the functions and the second immediately offers a post-hoc test by identifying the significant pair-wise differences between groups. The proposed tests rely on discretization of the functions, therefore the tests are also applicable in the multidimensional ANOVA problem. In the empirical part of the article, we demonstrate the use of the method by analyzing fiscal decentralization in European countries. (English)
Keyword: global envelope test
Keyword: groups comparison
Keyword: permutation test
Keyword: Europe
Keyword: fiscal decentralization
Keyword: nonparametrical methods
MSC: 62G10
MSC: 62H15
idZBL: Zbl 07250732
idMR: MR4131738
DOI: 10.14736/kyb-2020-3-0432
.
Date available: 2020-09-02T09:18:32Z
Last updated: 2021-02-23
Stable URL: http://hdl.handle.net/10338.dmlcz/148309
.
Reference: [1] Abramovich, F., Angelini, C.: Testing in mixed-effects FANOVA models..J. Statist. Planning Inference 136 (2006), 4326-4348. MR 2323419, 10.1016/j.jspi.2005.06.002
Reference: [2] Ackerman, B.: The rise of world constitutionalism..Virginia Law Rev. 83 (1997), 771-797. 10.2307/1073748
Reference: [3] Alesina, A., Spolaore, E.: On the number and size of nations..Quarterly J. Econom. 112 (1997), 1027-1056. 10.1162/003355300555411
Reference: [4] Arzaghi, M., Henderson, J. V.: Why countries are fiscally decentralizing..J. Public Econom. 89 (2005), 1157-1189. 10.1016/j.jpubeco.2003.10.009
Reference: [5] Bolton, P., Roland, G.: The breakup of nations: A political economy analysis..Quarterly J. Econom. 112 (1997), 1057-1090. 10.1162/003355300555420
Reference: [6] Cerniglia, F.: Decentralization in the public sector: quantitative aspects in federal and unitary countries..J. Pol. Model. 25 (2003), 749-776. 10.1016/s0161-8938(03)00069-3
Reference: [7] Choi, H., Reimherr, M.: A geometric approach to confidence regions and bands for functional parameters..J. Royal Statist. Soc.: Series B (Statist. Methodology) 80 (2018), 239-260. MR 3744720, 10.1111/rssb.12239
Reference: [8] Cox, D. D., Lee, J. S.: Pointwise testing with functional data using the Westfall-Young randomization method..Biometrika 95 (2008), 621-634. MR 2443179, 10.1093/biomet/asn021
Reference: [9] Cuesta-Albertos, J., Febrero-Bande, M.: A simple multiway ANOVA for functional data..Test 19 (2010), 537-557. MR 2746001, 10.1007/s11749-010-0185-3
Reference: [10] Cuevas, A., Febrero, M., Fraiman, R.: An anova test for functional data..Computat. Statist. Data Analysis 47 (2004), 111-122. MR 2087932, 10.1016/j.csda.2003.10.021
Reference: [11] Ermini, B., santolini, R.: does globalization matter on fiscal decentralization? New evidence from the OECD..Global Econom. Rev. 43 (2014), 153-183. 10.1080/1226508x.2014.920240
Reference: [12] 2018, Eurostat: Government revenue, Expenditure and Main Aggregates (gov_10a_main)..
Reference: [13] Febrero-Bande, M., Oviedo de la Fuente, M.: Statistical computing in functional data analysis: The R package fda.usc..J. Statist. Software 51 (2012), 1-28. 10.18637/jss.v051.i04
Reference: [14] Ferraty, F., Vieu, P., Viguier-Pla, S.: Factor-based comparison of groups of curves..Computat. Statist. Data Analysis 51 (2007), 4903-4910. MR 2364548, 10.1016/j.csda.2006.10.001
Reference: [15] Górecki, T., Smaga, L.: A comparison of tests for the one-way ANOVA problem for functional data..Comput. Statist. 30 (2015), 987-1010. MR 3433439, 10.1007/s00180-015-0555-0
Reference: [16] Górecki, T., Smaga, L.: fdANOVA: Analysis of Variance for Univariate and Multivariate Functional Data, R package version 0.1.0, 2017.. MR 3953673
Reference: [17] Hahn, U.: A studentized permutation test for the comparison of spatial point patterns..J. Amer. Statist. Assoc. 107 (2012), 754-764. MR 2980082, 10.1080/01621459.2012.688463
Reference: [18] Loosmore, N. B., Ford, E. D.: Statistical inference using the G or K point pattern spatial statistics..Ecology 87 (2006), 1925-1931. 10.1890/0012-9658(2006)87[1925:SIUTGO]2.0.CO;2
Reference: [19] Mrkvička, T., Myllymäki, M., Hahn, U.: Multiple Monte Carlo testing, with applications in spatial point processes..Statist. Comput. 27 (2017), 1239-1255. MR 3647095, 10.1007/s11222-016-9683-9
Reference: [20] Myllymäki, M., Mrkvička, T.: GET: Global envelopes in R..arXiv:1911.06583 stat.ME, 2019.
Reference: [21] Myllymäki, M., Mrkvička, T., Grabarnik, P., Seijo, H., Hahn, U.: Global envelope tests for spatial processes..J. Royal Statist. Soc. B 79 (2017), 381-404. MR 3611751, 10.1111/rssb.12172
Reference: [22] J., N.-N. Narisetty V., Nair: Extremal depth for functional data and applications..J. Amer. Statist. Assoc. 111 (2016), 1705-1714. MR 3601729, 10.1080/01621459.2015.1110033
Reference: [23] Nichols, T. E.., Holmes, E.: Nonparametric permutation tests for functional neuroimaging: A primer with examples..Human Brain M 15 (2001), 1-25. 10.1002/hbm.1058
Reference: [24] Oates, Wallace, E., E: Toward A second-generation theory of fiscal federalism..Int. Tax Public Finance 12 (2005), 349-373. 10.1007/s10797-005-1619-9
Reference: [25] Pantazis, D., Nichols, T. E., Baillet, S., Leahya, R. M.: A comparison of random field theory and permutation methods for the statistical analysis of MEG data..Neuroi 25 (2005), 383-394. 10.1016/j.neuroimage.2004.09.040
Reference: [26] Pini, A., Vantini, S., Colosimo, B. M., Grasso, M.: Domain-selective functional analysis of variance for supervised statistical profile monitoring of signal data..J. Royal Statist. Soc.: Series C (Appl. Statist.) 67 (2001), 55-81. MR 3758755, 10.1111/rssc.12218
Reference: [27] Team, R Core: R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing..Vienna 2019.
Reference: [28] Ramsay, J., Silverman, B.: Functional Data Analysis. Second edition..Springer Series in Statistics, Springer 2006. MR 2168993, 10.1007/978-1-4757-7107-7
Reference: [29] Rodrik, D.: Why do more open economies have bigger governments?.J. Polit. Economy 106 (1998), 997-1032. 10.1086/250038
Reference: [30] Sedova, J., Lipovska, H., Fischer: Fiscal autonomy in the secessionist regions..In: Current Trends in Public Sector Research, Masaryk University, Brno 2017.
Reference: [31] Spahn, P. B.: Contract Federalims..Edward Elgar Publishing Limited, Book Section 7, Cheltenham 2015, pp. 144-160.
Reference: [32] Stegarescu, D.: Public sector decentralisation: Measurement concepts and recent international trends..Fiscal Stud. 26 (2005), 301-333. 10.1111/j.1475-5890.2005.00014.x
Reference: [33] Stegarescu, D.: The effects of economic and political integration on fiscal decentralization: Evidence from OECD countries..Canadian J. Econom. / Revue Canadienne d'Economique 42 (2009), 694-718. 10.1111/j.1540-5982.2009.01524.x
Reference: [34] Vo, D. H.: New Fiscal Decentralization Indices..The University of Western Australia Discussion Paper 08.14, 93, 2008.
Reference: [35] Vo, D. H.: The economics of fiscal decentralization..J. Econom. Surveys 24 (2010), 657-679. 10.1111/j.1467-6419.2009.00600.x
Reference: [36] Vsevolozhskaya, O., Greenwood, M., Holodov, D.: Pairwise comparison of treatment levels in functional analysis of variance with application to erythrocyte hemolysis..Ann. Appl. Statist. 8 (2014), 905-925. MR 3262539, 10.1214/14-aoas723
Reference: [37] Zhang, J.-T.: Analysis of Variance for the functional data..Chapman and Hall, 2014. 10.1201/b15005
.

Files

Files Size Format View
Kybernetika_56-2020-3_3.pdf 616.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo