[2] Chang, T., Nedić, A., Scaglione, A.: 
Distributed constrained optimization by consensus-based primal-dual perturbation method. IEEE Trans. Automat. Control 59 (2014), 1524-1538. 
DOI 10.1109/TAC.2014.2308612 | 
MR 3225227 
[3] Chen, C., Chan, R., Ma, S., Yang, J.: 
Inertial proximal ADMM for linearly constrained separable convex optimization. SIAM J. Imaging Sci. 8 (2015), 2239-2267. 
DOI 10.1137/15100463X | 
MR 3404682 
[4] Dominguez-Garcia, A., Hadjicostis, C.: 
Distributed matrix scaling and application to average consensus in directed graphs. IEEE Trans. Automat. Control 58 (2013), 667-681. 
DOI 10.1109/TAC.2012.2219953 | 
MR 3029463 
[5] Duchi, J., Agarwal, A., Wainwright, M.: 
Dual averaging for distributed optimization: Convergence analysis and network scaling. IEEE Trans. Automat. Control 57 (2012), 592-606. 
DOI 10.1109/TAC.2011.2161027 | 
MR 2932818 
[6] Gharesifard, B., Cortés, J.: 
Distributed strategies for generating weight-balanced and doubly stochastic digraphs. Europ. J. Control 18 (2012), 539-557. 
DOI 10.3166/EJC.18.539-557 | 
MR 3086897 
[7] Gharesifard, B., Cortés, J., Jorge: 
Distributed continuous-time convex optimization on weight-balanced digraphs. IEEE Trans. Automat. Control 59 (2014), 781-786. 
DOI 10.1109/TAC.2013.2278132 | 
MR 3188487 
[9] Halabian, H.: 
Distributed Resource Allocation Optimization in 5G Virtualized Networks. IEEE J. Selected Areas Commun. 37 (2019), 627-642. 
DOI 10.1109/JSAC.2019.2894305 
[10] Jian, L., Hu, J., Wang, J. W., Shi, K.: 
Distributed inexact dual consensus ADMM for network resource allocation. Optimal Control, Appl. Methods 40 (2019), 6, 1071-1087. 
DOI 10.1002/oca.2538 | 
MR 4028355 
[11] Jian, L., Zhao, Y., Hu, J., Li, P.: 
Distributed inexact consensus-based ADMM method for multi-agent unconstrained optimization problem. IEEE Access 7 (2019), 1, 79311-79319. 
DOI 10.1109/ACCESS.2019.2923269 
[12] Kempe, D., Dobra, A., Gehrke, J.: 
Gossip-based computation of aggregate information. 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings. (2003), 482-491. 
DOI 10.1109/SFCS.2003.1238221 
[13] Liang, S., Zeng, X., Hong, Y.: 
Distributed nonsmooth optimization with coupled inequality constraints via modified lagrangian function. IEEE Trans. Automat. Control 63 (2018), 1753-1759. 
DOI 10.1109/TAC.2017.2752001 | 
MR 3807659 
[15] Liang, S., Wang, L., Yin, G.: Exponential convergence of distributed primal-dual convex optimization algorithm without strong convexity. 
[16] Lin, P., Peng, Wang, Y., Qi, H., Hong, Y.: Distributed consensus-based K-means algorithm in switching multi-agent networks. 
[19] Nedić, A., Ozdaglar, A., Parrilo, P. A.: 
Constrained consensus and optimization in multi-agent networks. IEEE Trans. Automat. Control. 55 (2010), 922-938. 
DOI 10.1109/TAC.2010.2041686 | 
MR 2654432 
[20] Nedić, A., Olshevsky, A.: 
Stochastic gradient-push for strongly convex functions on time-varying directed graphs. IEEE Trans. Automat. Control 61 (2016), 3936-3947. 
DOI 10.1109/TAC.2016.2529285 | 
MR 3582505 
[21] Nedić, A., Olshevsky, A., Shi, W.: 
Achieving geometric convergence for distributed optimization over time-varying graphs. SIAM J. Optim. 27 (2017), 2597-2633. 
DOI 10.1137/16M1084316 | 
MR 3738851 
[23] Shi, W., Ling, Q., Wu, G., Yin, W.: 
Extra: An exact first-order algorithm for decentralized consensus optimization. SIAM J. Optim. 25 (2015), 944-966. 
DOI 10.1137/14096668X | 
MR 3343366 
[24] Tsianos, K. I., Lawlor, S., Rabbat, M. G.: 
Push-sum distributed dual averaging for convex optimization. In: 2012 IEEE 51st IEEE Conference on Decision and Control (CDC) 2012, pp. 5453-5458. 
DOI 10.1109/CDC.2012.6426375 
[25] Tsianos, K. I., Rabbat, M. G.: 
Distributed dual averaging for convex optimization under communication delays. In: 2012 American Control Conference (ACC) 2012, pp. 1067-1072. 
DOI 10.1109/ACC.2012.6315289 
[26] Xi, C., Khan, U. A.: On the linear convergence of distributed optimization over directed graphs. arXiv preprint arXiv:1510.02149 (2015).
[28] Xin, R., Xi, C., Khan, U. A.: 
Distributed Subgradient Projection Algorithm over Directed Graphs: Alternate Proof. arXiv preprint arXiv:1706.07707 (2017). 
MR 3684332 
[29] Xin, R., Xi, C., Khan, U. A.: 
FROST-Fast row-stochastic optimization with uncoordinated step-sizes. EURASIP J. Advances Signal Process. 1 (2019), 1-14. 
DOI 10.1186/s13634-018-0596-y 
[30] Yang, T., George, J., Qin, J., Yi, X., Wu, J.: 
Distributed finite-time least squares solver for network linear equations. arXiv preprint arXiv:1810.00156(2018). 
MR 4047486 
[31] Yi, P., Hong, Y., F., Liu: 
Initialization-free distributed algorithms for optimal resource allocation with feasibility constraints and its application to economic dispatch of power systems. Automatica 74 (2016), 259-269. 
DOI 10.1016/j.automatica.2016.08.007 | 
MR 3569392 
[32] Yuan, D., Proutiere, A., Shi, G.: Distributed Online Linear Regression. arXiv preprint arXiv:1902.04774.
[33] Zeng, X., Yi, P., Hong, Y.: 
Distributed continuous-time algorithm for constrained convex optimizations via nonsmooth analysis approach. IEEE Trans. Automat. Control 62 (2017), 5227-5233. 
DOI 10.1109/TAC.2016.2628807 | 
MR 3708893