Previous |  Up |  Next

Article

Title: Stability of unique pseudo almost periodic solutions with measure (English)
Author: Ghanmi, Boulbaba
Author: Miraoui, Mohsen
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 65
Issue: 4
Year: 2020
Pages: 421-445
Summary lang: English
.
Category: math
.
Summary: By means of the fixed-point methods and the properties of the $\mu $-pseudo almost periodic functions, we prove the existence, uniqueness, and exponential stability of the $\mu $-pseudo almost periodic solutions for some models of recurrent neural networks with mixed delays and time-varying coefficients, where $\mu $ is a positive measure. A numerical example is given to illustrate our main results. (English)
Keyword: measure pseudo almost periodic solution
Keyword: recurrent neural networks
Keyword: mixed delays
MSC: 34C27
MSC: 34K14
MSC: 35B15
MSC: 37B25
MSC: 92C20
idZBL: 07250670
idMR: MR4134142
DOI: 10.21136/AM.2020.0252-19
.
Date available: 2020-09-07T09:46:21Z
Last updated: 2022-09-01
Stable URL: http://hdl.handle.net/10338.dmlcz/148341
.
Reference: [1] Abbas, S., Mahto, L., Hafayed, M., Alimi, A. M.: Asymptotic almost automorphic solutions of impulsive neural network with almost automorphic coefficients.Neurocomputing 142 (2014), 326-334. 10.1016/j.neucom.2014.04.028
Reference: [2] Ammar, B., Chérif, F., Alimi, A. M.: Existence and uniqueness of pseudo almost-periodic solution recurrent neural networks with time varying coefficient and mixed delays.IEEE Trans. Neural Netw. Learn Syst. 23 (2012), 109-118. MR 3453740, 10.1109/tnnls.2011.2178444
Reference: [3] Bai, C.: Existence and stability of almost periodic solutions of Hopfield neural networks with continuously distributed delays.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 71 (2009), 5850-5859. Zbl 1183.34113, MR 2547154, 10.1016/j.na.2009.05.008
Reference: [4] Blot, J., Cieutat, P., Ezzinbi, K.: New approach for weighted pseudo-almost periodic functions under the light of measure theory, basic results and applications.Appl. Anal. 92 (2013), 493-526. Zbl 1266.43004, MR 3021274, 10.1080/00036811.2011.628941
Reference: [5] Cao, J., Liang, J., Lam, J.: Exponential stability of high-order bidirectional associative memory neural networks with time delays.Physica D 199 (2004), 425-436. Zbl 1071.93048, MR 2106322, 10.1016/j.physd.2004.09.012
Reference: [6] Chérif, F.: Sufficient conditions for global stability and existence of almost automorphic solution of a class of RNNs.Differ. Equ. Dyn. Syst. 22 (2014), 191-207. Zbl 1298.34135, MR 3183104, 10.1007/s12591-013-0168-4
Reference: [7] Chérif, F., Miraoui, M.: New results for a Lasota-Wazewska model.Int. J. Biomath. 12 (2019), Article ID 1950019, 20 pages. Zbl 1409.35114, MR 3923070, 10.1142/S1793524519500190
Reference: [8] Chua, L. O., Yang, L.: Cellular neural networks: Theory.IEEE Trans. Circuits Syst. 35 (1988), 1257-1272. Zbl 0663.94022, MR 0960777, 10.1109/31.7600
Reference: [9] Chua, L. O., Yang, L.: Cellular neural networks: Applications.IEEE Trans. Circuits Syst. 35 (1988), 1273-1290. MR 0960778, 10.1109/31.7601
Reference: [10] Corduneanu, C., Georghiu, N., Barbu, V.: Almost Periodic Functions.Interscience Tracts in Pure and Applied Mathematics 22, Interscience Publishers, New York (1968). Zbl 0175.09101, MR 0481915
Reference: [11] Diagana, T.: Weighted pseudo-almost periodic solutions to some differential equations.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 68 (2008), 2250-2260. Zbl 1131.42006, MR 2398647, 10.1016/j.na.2007.01.054
Reference: [12] Diagana, T., Ezzinbi, K., Miraoui, M.: Pseudo-almost periodic and pseudo-almost automorphic solutions to some evolution equations involving theoretical measure theory.Cubo 16 (2014), 1-31. Zbl 1326.34075, MR 3237503, 10.4067/S0719-06462014000200001
Reference: [13] Duan, L.: Existence and global exponential stability of pseudo almost periodic solutions of a general delayed BAM neural networks.J. Syst. Sci. Complex. 31 (2018), 608-620. Zbl 1401.93175, MR 3782657, 10.1007/s11424-017-6180-y
Reference: [14] Fréchet, M.: Sur le théorème ergodique de Birkhoff.C. R. Acad. Sci., Paris 213 (1941), French 607-609. Zbl 0027.07704, MR 0009704
Reference: [15] Huang, H., Cao, J., Wang, J.: Global exponential stability and periodic solutions of recurrent neural networks with delays.Phys. Lett., A 298 (2002), 393-404. Zbl 0995.92007, MR 1915308, 10.1016/S0375-9601(02)00537-6
Reference: [16] Li, Y., Meng, X., Xiong, L.: Pseudo almost periodic solutions for neutral type high-order Hopfield neural networks with mixed time-varying delays and leakage delays on time scales.Int. J. Mach. Learn. Cyb. 8 (2017), 1915-1927. 10.1007/s13042-016-0570-7
Reference: [17] Meng, X., Li, Y.: Pseudo almost periodic solutions for quaternion-valued cellular neural networks with discrete and distributed delays.J. Inequal. Appl. 2018 (2018), Article ID 245, 17 pages. MR 3856277, 10.1186/s13660-018-1837-1
Reference: [18] M'hamdi, M. S., Aouiti, C., Touati, A., Alimi, A. M., Snasel, V.: Weighted pseudo almost-periodic solutions of shunting inhibitory cellular neural networks with mixed delays.Acta Math. Sci., Ser. B, Engl. Ed. 36 (2016), 1662-1682. Zbl 1374.34275, MR 3548316, 10.1016/S0252-9602(16)30098-4
Reference: [19] Miraoui, M.: Existence of $\mu$-pseudo almost periodic solutions to some evolution equations.Math. Methods Appl. Sci. 40 (2017), 4716-4726. Zbl 1377.34078, MR 3683339, 10.1002/mma.4339
Reference: [20] Miraoui, M.: $\mu$-pseudo-almost automorphic solutions for some differential equations with reflection of the argument.Numer. Funct. Anal. Optim. 38 (2017), 376-394. Zbl 1369.34093, MR 3619630, 10.1080/01630563.2017.1279175
Reference: [21] Miraoui, M., Yaakoubi, N.: Measure pseudo almost periodic solutions of shunting inhibitory cellular neural networks with mixed delays.Numer. Funct. Anal. Optim. 40 (2019), 571-585. Zbl 07060064, MR 3948375, 10.1080/01630563.2018.1561469
Reference: [22] N'Guérékata, G. M.: Almost Automorphic and Almost Periodic Functions in Abstract Spaces.Kluwer Academic/Plenum Publishers, New York (2001). Zbl 1001.43001, MR 1880351, 10.1007/978-1-4757-4482-8
Reference: [23] Qiu, F., Cui, B., Wu, W.: Global exponential stability of high order recurrent neural network with time-varying delays.Appl. Math. Modelling 33 (2009), 198-210. Zbl 1167.34384, MR 2458506, 10.1016/j.apm.2007.10.021
Reference: [24] Roska, T., Chua, L. O.: Cellular neural networks with non-linear and delay-type template elements and non-uniform grids.Int. J. Circuit Theory Appl. 20 (1992), 469-481. Zbl 0775.92011, 10.1002/cta.4490200504
Reference: [25] Xiang, H., Cao, J.: Almost periodic solutions of recurrent neural networks with continuously distributed delays.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 71 (2009), 6097-6108. Zbl 1196.34096, MR 2566514, 10.1016/j.na.2009.05.079
Reference: [26] Yu, Y., Cai, M.: Existence and exponential stability of almost-periodic solutions for high-order Hopfield neural networks.Math. Comput. Modelling 47 (2008), 943-951. Zbl 1144.34370, MR 2413726, 10.1016/j.mcm.2007.06.014
Reference: [27] Zhang, C.: Pseudo-almost-periodic solutions of some differential equations.J. Math. Anal. Appl. 181 (1994), 62-76. Zbl 0796.34029, MR 1257954, 10.1006/jmaa.1994.1005
Reference: [28] Zhang, C.: Pseudo almost periodic solutions of some differential equations. II.J. Math. Anal. Appl. 192 (1995), 543-561. Zbl 0826.34040, MR 1332227, 10.1006/jmaa.1995.1189
Reference: [29] Zhao, H.: Existence and global attractivity of almost periodic solution for cellular neural network with distributed delays.Appl. Math. Comput. 154 (2004), 683-695. Zbl 1057.34099, MR 2072813, 10.1016/S0096-3003(03)00743-4
.

Files

Files Size Format View
AplMat_65-2020-4_5.pdf 382.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo