Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
full magnetohydrodynamic flows; inviscid limit; expanding domain; incompressible limit
Summary:
In this paper we study the incompressible inviscid limit of the full magnetohydrodynamic flows on expanding domains with general initial data. By applying the relative energy method and carrying out detailed analysis on the oscillation part of the velocity, we prove rigorously that the gradient part of the weak solutions of the full magnetohydrodynamic flows converges to the strong solution of the incompressible Euler system in the whole space, as the Mach number, viscosity as well as the heat conductivity go to zero and the domains expand to the whole space. Furthermore, we obtain the convergence rate.
References:
[1] Desjardins, B., Grenier, E.: Low Mach number limit of viscous compressible flows in the whole space. Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. 455 (1999), 2271-2279. DOI 10.1098/rspa.1999.0403 | MR 1702718 | Zbl 0934.76080
[2] Feireisl, E., Nečasová, Š., Sun, Y.: Inviscid incompressible limits on expanding domains. Nonlinearity 27 (2014), 2465-2477. DOI 10.1088/0951-7715/27/10/2465 | MR 3265721 | Zbl 1298.76032
[3] Feireisl, E., Novotný, A.: The low Mach number limit for the full Navier-Stokes-Fourier system. Arch. Ration. Mech. Anal. 186 (2007), 77-107. DOI 10.1007/s00205-007-0066-4 | MR 2338352 | Zbl 1147.76049
[4] Feireisl, E., Novotný, A.: Singular Limits in Thermodynamics of Viscous Fluids. Advances in Mathematical Fluid Mechanics. Birkhäuser, Basel (2009). DOI 10.1007/978-3-7643-8843-0 | MR 2499296 | Zbl 1176.35126
[5] Feireisl, E., Novotný, A.: Inviscid incompressible limits of the full Navier-Stokes-Fourier system. Commun. Math. Phys. 321 (2013), 605-628. DOI 10.1007/s00220-013-1691-4 | MR 3070031 | Zbl 1291.35178
[6] Hu, X., Wang, D.: Global solutions to the three-dimensional full compressible magnetohydrodynamic flows. Commun. Math. Phys. 283 (2008), 255-284. DOI 10.1007/s00220-008-0497-2 | MR 2430634 | Zbl 1158.35075
[7] Jesslé, D., Jin, B. J., Novotný, A.: Navier-Stokes-Fourier system on unbounded domains: weak solutions, relative entropies, weak-strong uniqueness. SIAM J. Math. Anal. 45 (2013), 1907-1951. DOI 10.1137/120874576 | MR 3070532 | Zbl 1291.35183
[8] Jiang, S., Ju, Q., Li, F.: Incompressible limit of the compressible magnetohydrodynamic equations with periodic boundary conditions. Commun. Math. Phys. 297 (2010), 371-400. DOI 10.1007/s00220-010-0992-0 | MR 2651903 | Zbl 1195.35253
[9] Jiang, S., Ju, Q., Li, F.: Incompressible limit of the compressible magnetohydrodynamic equations with vanishing viscosity coefficients. SIAM J. Math. Anal. 42 (2010), 2539-2553. DOI 10.1137/100785168 | MR 2733259 | Zbl 1257.76164
[10] Lions, P.-L., Masmoudi, N.: Incompressible limit for a viscous compressible fluid. J. Math. Pures Appl. (9) 77 (1998), 585-627. DOI 10.1016/S0021-7824(98)80139-6 | MR 1628173 | Zbl 0909.35101
[11] Masmoudi, N.: Incompressible, inviscid limit of the compressible Navier-Stokes system. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 18 (2001), 199-224. DOI 10.1016/S0294-1449(00)00123-2 | MR 1808029 | Zbl 0991.35058
[12] McGrath, F. J.: Nonstationary plane flow of viscous and ideal fluids. Arch. Ration. Mech. Anal. 27 (1967), 329-348. DOI 10.1007/BF00251436 | MR 0221818 | Zbl 0187.49508
Partner of
EuDML logo