Previous |  Up |  Next

Article

Title: Incompressible inviscid limit for the full magnetohydrodynamic flows on expanding domains (English)
Author: Kwon, Young-Sam
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 65
Issue: 4
Year: 2020
Pages: 483-509
Summary lang: English
.
Category: math
.
Summary: In this paper we study the incompressible inviscid limit of the full magnetohydrodynamic flows on expanding domains with general initial data. By applying the relative energy method and carrying out detailed analysis on the oscillation part of the velocity, we prove rigorously that the gradient part of the weak solutions of the full magnetohydrodynamic flows converges to the strong solution of the incompressible Euler system in the whole space, as the Mach number, viscosity as well as the heat conductivity go to zero and the domains expand to the whole space. Furthermore, we obtain the convergence rate. (English)
Keyword: full magnetohydrodynamic flows
Keyword: inviscid limit
Keyword: expanding domain
Keyword: incompressible limit
MSC: 35E15
MSC: 35Q30
idZBL: 07250672
idMR: MR4134144
DOI: 10.21136/AM.2020.0342-18
.
Date available: 2020-09-07T09:47:58Z
Last updated: 2022-09-01
Stable URL: http://hdl.handle.net/10338.dmlcz/148343
.
Reference: [1] Desjardins, B., Grenier, E.: Low Mach number limit of viscous compressible flows in the whole space.Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. 455 (1999), 2271-2279. Zbl 0934.76080, MR 1702718, 10.1098/rspa.1999.0403
Reference: [2] Feireisl, E., Nečasová, Š., Sun, Y.: Inviscid incompressible limits on expanding domains.Nonlinearity 27 (2014), 2465-2477. Zbl 1298.76032, MR 3265721, 10.1088/0951-7715/27/10/2465
Reference: [3] Feireisl, E., Novotný, A.: The low Mach number limit for the full Navier-Stokes-Fourier system.Arch. Ration. Mech. Anal. 186 (2007), 77-107. Zbl 1147.76049, MR 2338352, 10.1007/s00205-007-0066-4
Reference: [4] Feireisl, E., Novotný, A.: Singular Limits in Thermodynamics of Viscous Fluids.Advances in Mathematical Fluid Mechanics. Birkhäuser, Basel (2009). Zbl 1176.35126, MR 2499296, 10.1007/978-3-7643-8843-0
Reference: [5] Feireisl, E., Novotný, A.: Inviscid incompressible limits of the full Navier-Stokes-Fourier system.Commun. Math. Phys. 321 (2013), 605-628. Zbl 1291.35178, MR 3070031, 10.1007/s00220-013-1691-4
Reference: [6] Hu, X., Wang, D.: Global solutions to the three-dimensional full compressible magnetohydrodynamic flows.Commun. Math. Phys. 283 (2008), 255-284. Zbl 1158.35075, MR 2430634, 10.1007/s00220-008-0497-2
Reference: [7] Jesslé, D., Jin, B. J., Novotný, A.: Navier-Stokes-Fourier system on unbounded domains: weak solutions, relative entropies, weak-strong uniqueness.SIAM J. Math. Anal. 45 (2013), 1907-1951. Zbl 1291.35183, MR 3070532, 10.1137/120874576
Reference: [8] Jiang, S., Ju, Q., Li, F.: Incompressible limit of the compressible magnetohydrodynamic equations with periodic boundary conditions.Commun. Math. Phys. 297 (2010), 371-400. Zbl 1195.35253, MR 2651903, 10.1007/s00220-010-0992-0
Reference: [9] Jiang, S., Ju, Q., Li, F.: Incompressible limit of the compressible magnetohydrodynamic equations with vanishing viscosity coefficients.SIAM J. Math. Anal. 42 (2010), 2539-2553. Zbl 1257.76164, MR 2733259, 10.1137/100785168
Reference: [10] Lions, P.-L., Masmoudi, N.: Incompressible limit for a viscous compressible fluid.J. Math. Pures Appl. (9) 77 (1998), 585-627. Zbl 0909.35101, MR 1628173, 10.1016/S0021-7824(98)80139-6
Reference: [11] Masmoudi, N.: Incompressible, inviscid limit of the compressible Navier-Stokes system.Ann. Inst. Henri Poincaré, Anal. Non Linéaire 18 (2001), 199-224. Zbl 0991.35058, MR 1808029, 10.1016/S0294-1449(00)00123-2
Reference: [12] McGrath, F. J.: Nonstationary plane flow of viscous and ideal fluids.Arch. Ration. Mech. Anal. 27 (1967), 329-348. Zbl 0187.49508, MR 0221818, 10.1007/BF00251436
.

Files

Files Size Format View
AplMat_65-2020-4_7.pdf 383.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo