Previous |  Up |  Next

Article

Title: Periodic solutions of nonlinear differential systems by the method of averaging (English)
Author: Li, Zhanyong
Author: Liu, Qihuai
Author: Zhang, Kelei
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 65
Issue: 4
Year: 2020
Pages: 511-542
Summary lang: English
.
Category: math
.
Summary: In many engineering problems, when studying the existence of periodic solutions to a nonlinear system with a small parameter via the local averaging theorem, it is necessary to verify some properties of the fundamental solution matrix to the corresponding linearized system along the periodic solution of the unperturbed system. But sometimes, it is difficult or it requires a lot of calculations. In this paper, a few simple and effective methods are introduced to investigate the existence of periodic solutions for a kind of small parametric systems. In order to prove the existence of periodic solutions by these ideas, we also introduce a forced autoparametric vibrating system and a generalized model of the tuned mass absorber with pendulum discussed by Brzeski, Perlikowski, and Kapitaniak. Then, we also propose an averaging method to study the existence of periodic solutions. (English)
Keyword: periodic solution
Keyword: local averaging theorem
Keyword: forced autoparametric vibrating system
Keyword: tuned mass absorber
MSC: 34C25
MSC: 34C29
idZBL: 07250673
idMR: MR4134145
DOI: 10.21136/AM.2020.0006-19
.
Date available: 2020-09-07T09:48:42Z
Last updated: 2022-09-01
Stable URL: http://hdl.handle.net/10338.dmlcz/148344
.
Reference: [1] Bajaj, A. K., Chang, S. I., Johnson, J. M.: Amplitude modulated dynamics of a resonantly excited autoparametric two degree-of-freedom system.Nonlinear Dyn. 5 (1994), 433-457. 10.1007/bf00052453
Reference: [2] Brzeski, P., Karmazyn, A., Perlikowski, P.: Synchronization of two forced double-well Duffing oscillators with attached pendulums.J. Theor. Appl. Mech. 51 (2013), 603-613.
Reference: [3] Brzeski, P., Perlikowski, P., Kapitaniak, T.: Numerical optimization of tuned mass absorbers attached to strongly nonlinear Duffing oscillator.Commun. Nonlinear Sci. Numer. Simul. 19 (2014), 298-310. Zbl 1344.70009, MR 3142467, 10.1016/j.cnsns.2013.06.001
Reference: [4] Buică, A., Françoise, J.-P., Llibre, J.: Periodic solutions of nonlinear periodic differential systems with a small parameter.Commun. Pure Appl. Anal. 6 (2007), 103-111. Zbl 1139.34036, MR 2276332, 10.3934/cpaa.2007.6.103
Reference: [5] Buică, A., Giné, J., Llibre, J.: A second order analysis of the periodic solutions for nonlinear periodic differential systems with a small parameter.Physica D 241 (2012), 528-533. Zbl 1247.34060, MR 2878933, 10.1016/j.physd.2011.11.007
Reference: [6] Bustos, M. T. de, López, M. A., Martínez, R.: On the periodic solutions of a linear chain of three identical atoms.Nonlinear Dyn. 76 (2014), 893-903. Zbl 1306.34071, MR 3192186, 10.1007/s11071-013-1176-1
Reference: [7] Euzébio, R. D., Llibre, J.: Periodic solutions of {\it El Niño} model through the Vallis differential system.Discrete Contin. Dyn. Syst. 34 (2014), 3455-3469. Zbl 1302.86010, MR 3190988, 10.3934/dcds.2014.34.3455
Reference: [8] Gus'kov, A. M., Panovko, G. Ya., Bin, C. V.: Analysis of the dynamics of a pendulum vibration absorber.J. Mach. Manuf. Reliab. 37 (2008), 321-329. 10.3103/s105261880804002x
Reference: [9] Hatwal, H., Mallik, A. K., Ghosh, A.: Nonlinear vibrations of a harmonically excited autoparametric system.J. Sound Vib. 81 (1982), 153-164. Zbl 0483.70018, MR 0650937, 10.1016/0022-460X(82)90201-2
Reference: [10] Hatwal, H., Mallik, A. K., Ghosh, A.: Forced nonlinear oscillations of an autoparametric system. I. Periodic responses.J. Appl. Mech. 50 (1983), 657-662. Zbl 0537.70024, 10.1115/1.3167106
Reference: [11] Hatwal, H., Mallik, A. K., Ghosh, A.: Forced nonlinear oscillations of an autoparametric system. II. Chaotic responses.J. Appl. Mech. 50 (1983), 663-668. Zbl 0537.70025, 10.1115/1.3167107
Reference: [12] Huang, R., Chu, D.: Relative perturbation analysis for eigenvalues and singular values of totally nonpositive matrices.SIAM J. Matrix Anal. Appl. 36 (2015), 476-495. Zbl 1328.65089, MR 3340200, 10.1137/140995702
Reference: [13] Lembarki, F. E., Llibre, J.: Periodic orbits for the generalized Yang-Mills Hamiltonian system in dimension 6.Nonlinear Dyn. 76 (2014), 1807-1819. Zbl 1314.70032, MR 3192700, 10.1007/s11071-014-1249-9
Reference: [14] Li, Z., Liu, Q., Zhang, K.: Harmonic motions of a weakly forced autoparametric vibrating system.J. Phys., Conf. Ser. 1053 (2018), Article ID 012088. 10.1088/1742-6596/1053/1/012088
Reference: [15] Liu, Q., Cai, L.: Averaging methods for nonlinear systems with a small parameter via reduction and topological degree.Nonlinear Anal., Real World Appl. 45 (2019), 461-471. Zbl 07030113, MR 3854316, 10.1016/j.nonrwa.2018.07.019
Reference: [16] Liu, Q., Qian, D.: Modulated amplitude waves with nonzero phases in Bose-Einstein condensates.J. Math. Phys. 52 (2011), Article ID 082702, 11 pages. Zbl 1272.82025, MR 2858048, 10.1063/1.3623415
Reference: [17] Liu, Q., Qian, D.: Construction of modulated amplitude waves via averaging in collisionally inhomogeneous Bose-Einstein condensates.J. Nonlinear Math. Phys. 19 (2012), 255-268. Zbl 1254.35209, MR 2949250, 10.1142/S1402925112500179
Reference: [18] Liu, Q., Xing, M., Li, X., Wang, C.: Unstable and exact periodic solutions of three-particles time-dependent FPU chains.Chin. Phys. B 24 (2015), 246-252. 10.1088/1674-1056/24/12/120401
Reference: [19] Llibre, J., Moeckel, R., Simó, C.: Central Configurations, Periodic Orbits, and Hamiltonian Systems.Advanced Courses in Mathematics, CRM Barcelona. Birkhäuser/Springer, Basel (2015). Zbl 1336.37002, MR 3381578, 10.1007/978-3-0348-0933-7
Reference: [20] Llibre, J., Świrszcz, G.: On the limit cycles of polynomial vector fields.Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 18 (2011), 203-214. Zbl 1223.34039, MR 2768130
Reference: [21] Llibre, J., Yu, J., Zhang, X.: Limit cycles for a class of third-order differential equations.Rocky Mt. J. Math. 40 (2010), 581-594. Zbl 1196.37087, MR 2646459, 10.1216/RMJ-2010-40-2-581
Reference: [22] Llibre, J., Zhang, X.: On the Hopf-zero bifurcation of the Michelson system.Nonlinear Anal., Real World Appl. 12 (2011), 1650-1653. Zbl 1220.34070, MR 2781884, 10.1016/j.nonrwa.2010.10.019
Reference: [23] Rabanal, R.: On the limit cycles of a class of Kukles type differential systems.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 95 (2014), 676-690. Zbl 1297.34046, MR 3130553, 10.1016/j.na.2013.10.013
Reference: [24] Verhulst, F.: Nonlinear Differential Equations and Dynamical Systems.Universitext. Springer, Berlin (1996). Zbl 0854.34002, MR 1422255, 10.1007/978-3-642-61453-8
Reference: [25] Vyas, A., Bajaj, A. K.: Dynamics of autoparametric vibration absorbers using multiple pendulums.J. Sound Vib. 246 (2001), 115-135. Zbl 1237.70118, MR 1895251, 10.1006/jsvi.2001.3616
Reference: [26] Vyas, A., Bajaj, A. K., Raman, A.: Dynamics of structures with wideband autoparametric vibration absorbers: theory.Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 460 (2004), 1547-1581. Zbl 1108.70307, MR 2067554, 10.1098/rspa.2003.1204
Reference: [27] Wang, G., Zhou, Z., Zhu, S., Wang, S.: Ordinary Differential Equations.Higher Education Press, Beijing (2006), Chinese.
.

Files

Files Size Format View
AplMat_65-2020-4_8.pdf 428.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo