Previous |  Up |  Next

Article

Title: Recollement of colimit categories and its applications (English)
Author: Huang, Ju
Author: Chen, QingHua
Author: Lai, Chunhuan
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 70
Issue: 4
Year: 2020
Pages: 1147-1160
Summary lang: English
.
Category: math
.
Summary: We give an explicit recollement for a cocomplete abelian category and its colimit category. We obtain some applications on Leavitt path algebras, derived equivalences and $K$-groups. (English)
Keyword: colimit category
Keyword: recollement
Keyword: Leavitt path algebra
Keyword: $K_i$ group
MSC: 18A30
MSC: 19D50
idZBL: 07285986
idMR: MR4181803
DOI: 10.21136/CMJ.2020.0240-19
.
Date available: 2020-11-18T09:49:27Z
Last updated: 2023-01-02
Stable URL: http://hdl.handle.net/10338.dmlcz/148418
.
Reference: [1] Abrams, G., Pino, G. Aranda: The Leavitt path algebra of a graph.J. Algebra 293 (2005), 319-334. Zbl 1119.16011, MR 2172342, 10.1016/j.jalgebra.2005.07.028
Reference: [2] Hügel, L. Angeleri, Koenig, S., Liu, Q.: Recollements and tilting objects.J. Pure Appl. Algebra 215 (2011), 420-438. Zbl 1223.18008, MR 2738361, 10.1016/j.jpaa.2010.04.027
Reference: [3] Ara, P., Moreno, M. A., Pardo, E.: Nonstable $K$-theory for graph algebras.Algebr. Represent. Theory 10 (2007), 157-178. Zbl 1123.16006, MR 2310414, 10.1007/s10468-006-9044-z
Reference: [4] Asadollahi, J., Hafezi, R., Vahed, R.: On the recollements of functor categories.Appl. Categ. Struct. 24 (2016), 331-371. Zbl 1360.18020, MR 3516076, 10.1007/s10485-015-9399-6
Reference: [5] Barot, M., Lenzing, H.: One-point extensions and derived equivalence.J. Algebra 264 (2003), 1-5. Zbl 1060.16011, MR 1980681, 10.1016/S0021-8693(03)00124-8
Reference: [6] Beilinson, A. A., Bernstein, J., Deligne, P.: Faisceaux pervers.Analysis and Topology on Singular Spaces I Astérisque 100. Société Mathématique de France, Paris (1982), 5-171 French. Zbl 1390.14055, MR 0751966
Reference: [7] Bergman, G. M.: Direct limits and fixed point sets.J. Algebra 292 (2005), 592-614. Zbl 1088.18001, MR 2172170, 10.1016/j.jalgebra.2005.08.002
Reference: [8] Chen, Q., Lin, Y.: Recollements of extension algebras.Sci. China, Ser. A 46 (2003), 530-537. Zbl 1215.18014, MR 2014485, 10.1007/BF02884025
Reference: [9] Cline, E., Parshall, B., Scott, L.: Algebraic stratification in representation categories.J. Algebra 117 (1988), 504-521. Zbl 0659.18011, MR 0957457, 10.1016/0021-8693(88)90123-8
Reference: [10] Franjou, V., Pirashvili, T.: Comparison of abelian categories recollements.Doc. Math. 9 (2004), 41-56. Zbl 1060.18008, MR 2054979
Reference: [11] Fuchs, L., Göbel, R., Salce, L.: On inverse-direct systems of modules.J. Pura Appl. Algebra 214 (2010), 322-331. Zbl 1181.13009, MR 2558741, 10.1016/j.jpaa.2009.05.003
Reference: [12] Grothendieck, A.: Groupes de classes des categories abeliennes et triangulees. Complexes parfaits.Séminaire de Géométrie Algébrique du Bois-Marie 1965-66 SGA 5 Lecture Notes in Mathematics 589. Springer, Berlin (1977), 351-371 French. Zbl 0345.00011, MR 0491704, 10.1007/BFb0096809
Reference: [13] Guo, X. J., Li, L. B.: $K_1$ group of finite dimensional path algebra.Acta Math. Sin., Engl. Ser. 17 (2001), 273-276. Zbl 0986.19002, MR 1830928, 10.1007/s101149900010
Reference: [14] Happel, D.: Reduction techniques for homological conjectures.Tsukuba J. Math. 17 (1993), 115-130. Zbl 0809.16021, MR 1233117, 10.21099/tkbjm/1496162134
Reference: [15] Li, L. P.: Derived equivalences between triangular matrix algebras.Commun. Algebra 46 (2018), 615-628. Zbl 06875436, MR 3764883, 10.1080/00927872.2017.1327051
Reference: [16] Mahmood, S. J.: Limimts and colimits in categories of d. g. near-rings.Proc. Edinb. Math. Soc., II. Ser. 23 (1980), 1-7. Zbl 0414.16023, MR 0582016, 10.1017/S0013091500003539
Reference: [17] Miyachi, J.: Localization of triangulated categories and derived categories.J. Algebras 141 (1991), 463-483. Zbl 0739.18006, MR 1125707, 10.1016/0021-8693(91)90243-2
Reference: [18] Parshall, B. J., Scott, L. L.: Derived categories, quasi-hereditary algebras, and algebraic groups.Proceedings of the Ottawa-Moosonee Workshop in Algebra Mathematical Lecture Note Series. Carlton University, Ottawa (1988), 1-104. Zbl 0711.18002
Reference: [19] Quillen, D.: Higher algebraic $K$-theory. I.Higher $K$-Theories Lecture Notes in Mathematics 341. Springer, Berlin (1973). Zbl 0292.18004, MR 0338129, 10.1007/BFb0067053
Reference: [20] Xue, R., Yan, Y., Chen, Q.: On colimit-categories.J. Math., Wuhan Univ. 32 (2012), 439-446. Zbl 1265.18002, MR 2963903
.

Files

Files Size Format View
CzechMathJ_70-2020-4_18.pdf 317.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo