Previous |  Up |  Next

Article

Title: On groups of automorphisms of nilpotent $p$-groups of finite rank (English)
Author: Xu, Tao
Author: Liu, Heguo
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 70
Issue: 4
Year: 2020
Pages: 1161-1165
Summary lang: English
.
Category: math
.
Summary: Let $\alpha $ and $\beta $ be automorphisms of a nilpotent $p$-group $G$ of finite rank. Suppose that $\langle (\alpha \beta (g))(\beta \alpha (g))^{-1}\colon g\in G\rangle $ is a finite cyclic subgroup of $G$, then, exclusively, one of the following statements holds for $G$ and $\Gamma $, where $\Gamma $ is the group generated by $\alpha $ and $\beta $. \item {(i)} $G$ is finite, then $\Gamma $ is an extension of a $p$-group by an abelian group. \item {(ii)} $G$ is infinite, then $\Gamma $ is soluble and abelian-by-finite. (English)
Keyword: automorphism
Keyword: nilpotent group
Keyword: finite rank
MSC: 20F18
MSC: 20F28
idZBL: 07285987
idMR: MR4181804
DOI: 10.21136/CMJ.2020.0262-19
.
Date available: 2020-11-18T09:49:54Z
Last updated: 2023-01-02
Stable URL: http://hdl.handle.net/10338.dmlcz/148419
.
Reference: [1] Dardano, U., Eick, B., Menth, M.: On groups of automorphisms of residually finite groups.J. Algebra 231 (2000), 561-573. Zbl 0967.20022, MR 1778158, 10.1006/jabr.2000.8334
Reference: [2] Guralnick, R. M.: A note on pairs of matrices with rank one commutator.Linear Multilinear Algebra 8 (1979), 97-99. Zbl 0423.15005, MR 552353, 10.1080/03081087908817305
Reference: [3] Liu, H. G., Zhang, J. P.: On $p$-automorphisms of a nilpotent $p$-group with finite rank.Acta Math. Sin., Chin. Ser. 50 (2007), 11-16 Chinese. Zbl 1124.20022, MR 2305790
Reference: [4] Robinson, D. J. S.: Residual properties of some classes of infinite soluble groups.Proc. Lond. Math. Soc., III. Ser. 18 (1968), 495-520. Zbl 0157.05402, MR 228586, 10.1112/plms/s3-18.3.495
Reference: [5] Robinson, D. J. S.: Finiteness Conditions and Generalized Soluble Groups. Part 2.Ergebnisse der Mathematik und ihrer Grenzgebiete 63, Springer, Berlin (1972). Zbl 0243.20033, MR 332990, 10.1007/978-3-662-11747-7
Reference: [6] Robinson, D. J. S.: A Course in the Theory of Groups.Graduate Texts in Mathematics 80, Springer, New York (1982). Zbl 0483.20001, MR 0648604, 10.1007/978-1-4419-8594-1
Reference: [7] Segal, D.: Polycyclic Groups.Cambridge Tracts in Mathematics 82, Cambridge University Press, Cambridge (1983). Zbl 0516.20001, MR 713786, 10.1017/CBO9780511565953
Reference: [8] Wehrfritz, B. A. F.: Infinite Linear Groups. An Account of the Group-Theoretic Properties of Infinite Groups of Matrices.Ergebnisse der Mathematik und ihrer Grenzgebiete 76, Springer, Berlin (1973). Zbl 0261.20038, MR 0335656, 10.1007/978-3-642-87081-1
.

Files

Files Size Format View
CzechMathJ_70-2020-4_19.pdf 233.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo