Previous |  Up |  Next

Article

Title: Coleman automorphisms of finite groups with a self-centralizing normal subgroup (English)
Author: Hai, Jinke
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 70
Issue: 4
Year: 2020
Pages: 1197-1204
Summary lang: English
.
Category: math
.
Summary: Let $G$ be a finite group with a normal subgroup $N$ such that $C_{G}(N)\leq N$. It is shown that under some conditions, Coleman automorphisms of $G$ are inner. Interest in such automorphisms arose from the study of the normalizer problem for integral group rings.\looseness -1 (English)
Keyword: Coleman automorphism
Keyword: integral group ring
Keyword: the normalizer property
MSC: 16S34
MSC: 20C05
MSC: 20C10
idZBL: 07285991
idMR: MR4181808
DOI: 10.21136/CMJ.2020.0423-19
.
Date available: 2020-11-18T09:51:49Z
Last updated: 2023-01-02
Stable URL: http://hdl.handle.net/10338.dmlcz/148423
.
Reference: [1] Coleman, D. B.: On the modular group ring of a $p$-group.Proc. Am. Math. Soc. 15 (1964), 511-514. Zbl 0132.27501, MR 0165015, 10.1090/S0002-9939-1964-0165015-8
Reference: [2] Hai, J., Ge, S., He, W.: The normalizer property for integral group rings of holomorphs of finite nilpotent groups and the symmetric groups.J. Algebra Appl. 16 (2017), Article ID 1750025, 11 pages. Zbl 1388.20008, MR 3608412, 10.1142/S0219498817500256
Reference: [3] Hai, J., Guo, J.: The normalizer property for integral group ring of the wreath product of two symmetric groups $S_k$ and $S_n$.Commun. Algebra 45 (2017), 1278-1283. Zbl 1372.20007, MR 3573379, 10.1080/00927872.2016.1175613
Reference: [4] Hai, J., Li, Z.: On class-preserving Coleman automorphisms of finite separable groups.J. Algebra Appl. 13 (2014), Article ID 1350110, 8 pages. Zbl 1302.20028, MR 3125878, 10.1142/S0219498813501107
Reference: [5] Hertweck, M.: A counterexample to the isomorphism problem for integral group rings.Ann. Math. (2) 154 (2001), 115-138. Zbl 0990.20002, MR 1847590, 10.2307/3062112
Reference: [6] Hertweck, M.: Local analysis of the normalizer problem.J. Pure Appl. Algebra 163 (2001), 259-276. Zbl 0987.16015, MR 1852119, 10.1016/S0022-4049(00)00167-5
Reference: [7] Hertweck, M., Jespers, E.: Class-preserving automorphisms and the normalizer property for Blackburn groups.J. Group Theory 12 (2009), 157-169. Zbl 1168.16017, MR 2488146, 10.1515/JGT.2008.068
Reference: [8] Hertweck, M., Kimmerle, W.: Coleman automorphisms of finite groups.Math. Z. 242 (2002), 203-215. Zbl 1047.20020, MR 1980619, 10.1007/s002090100318
Reference: [9] Huppert, B.: Endliche Gruppen I.Grundlehren der mathematischen Wissenschaften 134. Springer, Berlin (1967), German. Zbl 0217.07201, MR 0224703, 10.1007/978-3-642-64981-3
Reference: [10] Jackowski, S., Marciniak, Z.: Group automorphisms inducing the identity map on cohomology.J. Pure Appl. Algebra 44 (1987), 241-250. Zbl 0624.20024, MR 0885108, 10.1016/0022-4049(87)90028-4
Reference: [11] Jespers, E., Juriaans, S. O., Miranda, J. M. de, Rogerio, J. R.: On the normalizer problem.J. Algebra 247 (2002), 24-36. Zbl 1063.16036, MR 1873381, 10.1006/jabr.2001.8724
Reference: [12] Juriaans, S. O., Miranda, J. M. de, Robério, J. R.: Automorphisms of finite groups.Commun. Algebra 32 (2004), 1705-1714. Zbl 1072.20030, MR 2099696, 10.1081/AGB-120029897
Reference: [13] Li, Y.: The normalizer of a metabelian group in its integral group ring.J. Algebra 256 (2002), 343-351. Zbl 1017.16023, MR 1939109, 10.1016/S0021-8693(02)00102-3
Reference: [14] Marciniak, Z. S., Roggenkamp, K. W.: The normalizer of a finite group in its integral group ring and Čech cohomology.Algebra - Representation Theory NATO Sci. Ser. II Math. Phys. Chem. 28. Kluwer Academic, Dordrecht (2001), 159-188. Zbl 0989.20002, MR 1858036, 10.1007/978-94-010-0814-3_8
Reference: [15] Lobão, T. Petit, Milies, C. Polcino: The normalizer property for integral group rings of Frobenius groups.J. Algebra 256 (2002), 1-6. Zbl 1017.16024, MR 1936875, 10.1016/S0021-8693(02)00156-4
Reference: [16] Lobão, T. Petit, Sehgal, S. K.: The normalizer property for integral group rings of complete monomial groups.Commun. Algebra 31 (2003), 2971-2983. Zbl 1039.16034, MR 1986226, 10.1081/AGB-120021903
Reference: [17] Rose, J. S.: A Course on Group Theory.Cambridge University Press, Cambridge (1978). Zbl 0371.20001, MR 0498810
Reference: [18] Sehgal, S. K.: Units in Integral Group Rings.Pitman Monographs and Surveys in Pure and Applied Mathematics 69. Longman Scientific & Technical, Harlow (1993). Zbl 0803.16022, MR 1242557
Reference: [19] Antwerpen, A. Van: Coleman automorphisms of finite groups and their minimal normal subgroups.J. Pure Appl. Algebra 222 (2018), 3379-3394. Zbl 06881278, MR 3806731, 10.1016/j.jpaa.2017.12.013
.

Files

Files Size Format View
CzechMathJ_70-2020-4_23.pdf 271.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo