Previous |  Up |  Next

Article

Title: A solvability criterion for finite groups related to character degrees (English)
Author: Miraali, Babak
Author: Robati, Sajjad Mahmood
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 70
Issue: 4
Year: 2020
Pages: 1205-1209
Summary lang: English
.
Category: math
.
Summary: Let $m>1$ be a fixed positive integer. In this paper, we consider finite groups each of whose nonlinear character degrees has exactly $m$ prime divisors. We show that such groups are solvable whenever $m>2$. Moreover, we prove that if $G$ is a non-solvable group with this property, then $m=2$ and $G$ is an extension of ${\rm A}_7$ or ${\rm S}_7$ by a solvable group. (English)
Keyword: non-solvable group
Keyword: solvable group
Keyword: character degree
MSC: 20C15
MSC: 20D10
idZBL: 07285992
idMR: MR4181809
DOI: 10.21136/CMJ.2020.0440-19
.
Date available: 2020-11-18T09:52:18Z
Last updated: 2023-01-02
Stable URL: http://hdl.handle.net/10338.dmlcz/148424
.
Reference: [1] Benjamin, D.: Coprimeness among irreducible character degrees of finite solvable groups.Proc. Am. Math. Soc. 125 (1997), 2831-2837. Zbl 0889.20004, MR 1443370, 10.1090/S0002-9939-97-04269-X
Reference: [2] Bianchi, M., Chillag, D., Lewis, M. L., Pacifici, E.: Character degree graphs that are complete graphs.Proc. Am. Math. Soc. 135 (2007), 671-676. Zbl 1112.20006, MR 2262862, 10.1090/S0002-9939-06-08651-5
Reference: [3] Conway, J. H., Curtis, R. T., Norton, S. P., Parker, R. A., Wilson, R. A.: Atlas of Finite Groups: Maximal Subgroups and Ordinary Characters for Simple Groups.Clarendon Press, Oxford (1985). Zbl 0568.20001, MR 0827219
Reference: [4] Group, GAP: GAP -- Groups, Algorithms, and Programming. A System for Computational Discrete Algebra. Version 4.7.4.Available at http://www.gap-system.org (2014).
Reference: [5] Isaacs, I. M.: Character Theory of Finite Groups.Pure and Applied Mathematics 69. Academic Press, New York (1976). Zbl 0337.20005, MR 0460423, 10.1090/chel/359
Reference: [6] Isaacs, I. M., Passman, D. S.: A characterization of groups in terms of the degrees of their characters II.Pac. J. Math. 24 (1968), 467-510. Zbl 0155.05502, MR 0241524, 10.2140/pjm.1968.24.467
Reference: [7] James, G., Kerber, A.: The Representation Theory of the Symmetric Group.Encyclopedia of Mathematics and Its Applications 16. Addison-Wesley, Reading (1981). Zbl 0491.20010, MR 644144, 10.1017/CBO9781107340732
Reference: [8] Manz, O.: Endliche auflösbare Gruppen, deren sämtliche Charaktergrade Primzahlpotenzen sind.J. Algebra 94 (1985), 211-255 German. Zbl 0596.20007, MR 789547, 10.1016/0021-8693(85)90210-8
Reference: [9] Manz, O.: Endliche nicht-auflösbare Gruppen, deren sämtliche Charaktergrade Primzahlpotenzen sind.J. Algebra 96 (1985), 114-119 German. Zbl 0567.20004, MR 808844, 10.1016/0021-8693(85)90042-0
Reference: [10] Schmid, P.: Extending the Steinberg representation.J. Algebra 150 (1992), 254-256. Zbl 0794.20022, MR 1174899, 10.1016/S0021-8693(05)80060-2
.

Files

Files Size Format View
CzechMathJ_70-2020-4_24.pdf 240.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo