Previous |  Up |  Next

Article

Title: Can a Lucas number be a sum of three repdigits? (English)
Author: Adegbindin, Chèfiath A.
Author: Togbé, Alain
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 61
Issue: 3
Year: 2020
Pages: 383-396
Summary lang: English
.
Category: math
.
Summary: We give the answer to the question in the title by proving that \begin{equation*} L_{18} = 5778 = 5555 + 222 + 1 \end{equation*} is the largest Lucas number expressible as a sum of exactly three repdigits. Therefore, there are many Lucas numbers which are sums of three repdigits. (English)
Keyword: Pell equation
Keyword: repdigit
Keyword: linear forms in complex logarithms
MSC: 11A25
MSC: 11B39
MSC: 11J86
idZBL: Zbl 07286011
idMR: MR4186114
DOI: 10.14712/1213-7243.2020.028
.
Date available: 2020-11-27T07:45:49Z
Last updated: 2022-10-03
Stable URL: http://hdl.handle.net/10338.dmlcz/148473
.
Reference: [1] Adegbindin C., Luca F., Togbé A.: Pell and Pell–Lucas numbers as sums of three repdigits.accepted in Acta Math. Univ. Comenian. (N.S.). MR 4061423
Reference: [2] Bravo J. J., Luca F.: On a conjecture about repdigits in $k$-generalized Fibonacci sequences.Publ. Math. Debrecen 82 (2013), no. 3–4, 623–639. MR 3066434, 10.5486/PMD.2013.5390
Reference: [3] Bugeaud Y., Mignotte M.: On integers with identical digits.Mathematika 46 (1999), no. 2, 411–417. MR 1832631, 10.1112/S0025579300007865
Reference: [4] Bugeaud Y., Mignotte M., Siksek S.: Classical and modular approaches to exponential Diophantine equations. I. Fibonacci and Lucas perfect powers.Ann. of Math. (2) 163 (2006), no. 3, 969–1018. MR 2215137, 10.4007/annals.2006.163.969
Reference: [5] Díaz-Alvarado S., Luca F.: Fibonacci numbers which are sums of two repdigits.Proc. XIVth International Conf. on Fibonacci Numbers and Their Applications, Morelia, Mexico, 2010, Sociedad Matematica Mexicana, Aportaciones Matemáticas, Investigación, 20, 2011, pages 97–108. MR 3243271
Reference: [6] Dossavi-Yovo A., Luca F., Togbé A.: On the $x$-coordinates of Pell equations which are rep-digits.Publ. Math. Debrecen 88 (2016), no. 3–4, 381–399. MR 3491748, 10.5486/PMD.2016.7378
Reference: [7] Faye B., Luca F.: Pell and Pell–Lucas numbers with only one distinct digit.Ann. Math. Inform. 45 (2015), 55–60. MR 3438812
Reference: [8] Luca F.: Distinct digits in base $b$ expansions of linear recurrence sequences.Quaest. Math. 23 (2000), no. 4, 389–404. MR 1810289, 10.2989/16073600009485986
Reference: [9] Luca F.: Fibonacci and Lucas numbers with only one distinct digit.Portugal. Math. 57 (2000), no. 2, 243–254. MR 1759818
Reference: [10] Luca F.: Repdigits as sums of three Fibonacci numbers.Math. Commun. 17 (2012), no. 1, 1–11. MR 2946127
Reference: [11] Marques D., Togbé A.: On terms of linear recurrence sequences with only one distinct block of digits.Colloq. Math. 124 (2011), no. 2, 145–155. MR 2842943, 10.4064/cm124-2-1
Reference: [12] Marques D., Togbé A.: On repdigits as product of consecutive Fibonacci numbers.Rend. Istit. Mat. Univ. Trieste 44 (2012), 393–397. MR 3019569
Reference: [13] Matveev E. M.: An explicit lower bound for a homogeneous rational linear form in logarithms of algebraic numbers, II.Izv. Ross. Akad. Nauk Ser. Mat. 64 (2000), no. 6, 125–180 (Russian); translation in Izv. Math. 64 (2000), no. 6, 1217–1269. MR 1817252
Reference: [14] de Weger B. M. M.: Algorithms for Diophantine Equations.CWI Tract, 65, Stichting Mathematisch Centrum, Centrum voor Wiskunde en Informatica, Amsterdam, 1989. MR 1026936
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_61-2020-3_7.pdf 271.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo