Previous |  Up |  Next

Article

Title: Exponential domination in function spaces (English)
Author: Tkachuk, Vladimir V.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 61
Issue: 3
Year: 2020
Pages: 397-408
Summary lang: English
.
Category: math
.
Summary: Given a Tychonoff space $X$ and an infinite cardinal $\kappa$, we prove that exponential $\kappa$-domination in $X$ is equivalent to exponential $\kappa$-cofinality of $\,C_p(X)$. On the other hand, exponential $\kappa$-cofinality of $X$ is equivalent to exponential $\kappa$-domination in $C_p(X)$. We show that every exponentially $\kappa$-cofinal space $X$ has a $\kappa^+$-small diagonal; besides, if $X$ is $\kappa$-stable, then $nw(X) \leq \kappa$. In particular, any compact exponentially $\kappa$-cofinal space has weight not exceeding $\kappa$. We also establish that any exponentially $\kappa$-cofinal space $X$ with $l(X) \leq\kappa$ and $t(X) \leq \kappa$ has $i$-weight not exceeding $\kappa$ while for any cardinal $\kappa$, there exists an exponentially $\o$-cofinal space $X$ such that $l(X) \geq \kappa$. (English)
Keyword: exponential $\kappa$-domination
Keyword: exponential $\kappa$-cofinality
Keyword: $\kappa$-stable space
Keyword: $i$-weight
Keyword: function space
Keyword: duality
Keyword: $\kappa^+$-small diagonal
MSC: 54C05
MSC: 54C35
MSC: 54G20
idZBL: Zbl 07286012
idMR: MR4186115
DOI: 10.14712/1213-7243.2020.032
.
Date available: 2020-11-27T07:47:01Z
Last updated: 2022-10-03
Stable URL: http://hdl.handle.net/10338.dmlcz/148474
.
Reference: [1] Arkhangel'skiĭ A. V.: Factorization theorems and spaces of functions: stability and monolithism.Dokl. Akad. Nauk SSSR 265 (1982), no. 5, 1039–1043 (Russian). MR 0670475
Reference: [2] Arkhangel'skiĭ A. V.: Continuous mappings, factorization theorems and spaces of functions.Trudy Moskov. Mat. Obshch. 47 (1984), 3–21, 246 (Russian). MR 0774944
Reference: [3] Arkhangel'skiĭ A. V.: Topological Function Spaces.Mathematics and Its Applications (Soviet Series), 78, Kluwer Academic Publishers Group, Dordrecht, 1992. MR 1144519, 10.1007/978-94-011-2598-7_4
Reference: [4] Asanov M. O.: On cardinal invariants of spaces of continuous functions.Sovr. Topologia i Teoria Mnozhestv 2 (1979), 8–12 (Russian).
Reference: [5] Engelking R.: General Topology,.Monografie Matematyczne, 60, PWN—Polish Scientific Publishers, Warsaw, 1977. MR 0500780
Reference: [6] Gruenhage G., Tkachuk V. V., Wilson R. G.: Domination by small sets versus density.Topology Appl. 282 (2020), 107306, 10 pages. MR 4116835, 10.1016/j.topol.2020.107306
Reference: [7] Hodel R. E.: Cardinal Functions. I..Handbook of Set-Theoretic Topology, North Holland, Amsterdam, 1984, 1–61. MR 0776620
Reference: [8] Hušek M.: Topological spaces without $\kappa$-accessible diagonal.Comment. Math. Univ. Carolinae 18 (1977), no. 4, 777–788. MR 0515009
Reference: [9] Juhász I., Szentmiklóssy Z.: Convergent free sequences in compact spaces.Proc. Amer. Math. Soc. 116 (1992), no. 4, 1153–1160. Zbl 0767.54002, MR 1137223, 10.2307/2159502
Reference: [10] Noble N.: The density character of function spaces.Proc. Amer. Math. Soc. 42 (1974), no. 1, 228–233. MR 0328855, 10.1090/S0002-9939-1974-0328855-4
Reference: [11] Pytkeev E. G.: Tightness of spaces of continuous functions.Uspekhi Mat. Nauk 37 (1982), no. 1(223), 157–158 (Russian). MR 0643782
Reference: [12] Tkachuk V. V.: A $C_p$-Theory Problem Book.Topological and Function Spaces, Problem Books in Mathematics, Springer, New York, 2011. MR 3024898
Reference: [13] Tkachuk V. V.: A $C_p$-Theory Problem Book.Special Features of Function Spaces, Problem Books in Mathematics, Springer, Cham, 2014. MR 3243753
Reference: [14] Tkachuk V. V.: A $C_p$-Theory Problem Book.Compactness in Function Spaces, Problem Books in Mathematics, Springer, Cham, 2015. MR 3243753
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_61-2020-3_8.pdf 289.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo