Previous |  Up |  Next

Article

Title: Characterisation of conditional independence structures for polymatroids using vanishing sets (English)
Author: Chan, Terence
Author: Chen, Qi
Author: Yeung, Raymond
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 56
Issue: 6
Year: 2020
Pages: 1022-1044
Summary lang: English
.
Category: math
.
Summary: In this paper, we characterise and classify a list of full conditional independences via the structure of the induced set of vanishing atoms. Construction of Markov random subfield and minimal characterisation of polymatroids satisfying a MRF will also be given. (English)
Keyword: full conditional independence
Keyword: markov random field
Keyword: polymatroids
MSC: 62-09
MSC: 62B10
idMR: MR4199901
DOI: 10.14736/kyb-2020-6-1022
.
Date available: 2021-01-08T08:31:16Z
Last updated: 2021-03-29
Stable URL: http://hdl.handle.net/10338.dmlcz/148497
.
Reference: [1] Blake, A., Kohli, P., Rother, C.: Markov random fields for vision and image processing..MIT Press, 2011. MR 2920522,
Reference: [2] Chan, T. H., Thakor, S., Grant, A.: Minimal characterisation of Shannon-type inequalities under functional dependence and full conditional independence structures..IEEE Trans. Inform. Theory 65 (2019), 7, 4041-4051. MR 3964839,
Reference: [3] Chen, M., Cho, J., Zhao, H.: Incorporating biological pathways via a Markov random field model in genome-wide association studies..PLOS Genetics 7 (2011), 1-13.
Reference: [4] Doyle, L. E., Kokaram, A. C., Doyle, S. J., Forde, T. K.: Ad hoc networking, Markov random fields, and decision making..IEEE Signal Process. Mag. 23 (2006), 63-73.
Reference: [5] Geiger, D., Pearl, J.: Logical and algorithmic properties of conditional independence and graphical models..Ann. Statist. 21 (1993), 4, 2001-2021. MR 1245778,
Reference: [6] Malvestuto, F.: A unique formal system for binary decompositions of database relations, probability distributions, and graphs..Inform. Sci. 59 (1992), 1, 21-52. MR 1128204,
Reference: [7] Snijders, T. A.: Statistical models for social networks..Ann. Rev. Sociology 37 (2011), 1, 131-153. MR 3074604,
Reference: [8] Wang, T., Krim, H., Viniotis, Y.: A generalized Markov graph model: Application to social network analysis..IEEE J. Selected Topics Signal Process. 7 (2013), 318-332.
Reference: [9] Yeung, R. W.: A new outlook on Shannon's information measures..IEEE Trans. Inform. Theory 37 (1991), 466-474. MR 1145812,
Reference: [10] Yeung, R. W.: Information Theory and Network Coding..Springer, 2008.
Reference: [11] Yeung, R. W., Al-Bashabsheh, A., Chen, C., Chen, Q., Moulin, P.: On information-theoretic characterizations of Markov random fields and subfields..IEEE Trans. Inform. Theory 65 (2019), 1493-1511. MR 3923182,
Reference: [12] Yeung, R. W., Lee, T. T., Ye, Z.: Information-theoretic characterizations of conditional mutual independence and markov random fields..IEEE Trans. Inform. Theory 48 (2002), 1996-2011. MR 1930006,
.

Files

Files Size Format View
Kybernetika_56-2020-6_2.pdf 551.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo