Previous |  Up |  Next

Article

Title: Construction methods for gaussoids (English)
Author: Boege, Tobias
Author: Kahle, Thomas
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 56
Issue: 6
Year: 2020
Pages: 1045-1062
Summary lang: English
.
Category: math
.
Summary: The number of $n$-gaussoids is shown to be a double exponential function in $n$. The necessary bounds are achieved by studying construction methods for gaussoids that rely on prescribing $3$-minors and encoding the resulting combinatorial constraints in a suitable transitive graph. Various special classes of gaussoids arise from restricting the allowed $3$-minors. (English)
Keyword: gaussoid
Keyword: conditional independence
Keyword: normal distribution
Keyword: cube
Keyword: minor
MSC: 05B35
MSC: 05B99
MSC: 60E05
idMR: MR4199902
DOI: 10.14736/kyb-2020-6-1045
.
Date available: 2021-01-08T08:32:38Z
Last updated: 2021-03-29
Stable URL: http://hdl.handle.net/10338.dmlcz/148498
.
Reference: [1] Boege, T., D'Ali, A., Kahle, T., Sturmfels, B.: The geometry of Gaussoids..Found. Comput. Math. 19 (2019), 4, 775-812. MR 3989713, 10.1007/s10208-018-9396-x
Reference: [2] Godsil, Ch., Royle, G.: Algebraic Graph Theory..Springer, Graduate Texts in Mathematics 207, 2001. Zbl 0968.05002, MR 1829620
Reference: [3] Hemmecke, R., Morton, J., Shiu, A., Sturmfels, B., Wienand, O.: Three counter-examples on semi-graphoids..Combinat. Probab. Comput. 17 (2008), 2, 239-257. MR 2396350, 10.1017/S0963548307008838
Reference: [4] Klein, F.: Elementary Mathematics from a Higher Standpoint, II: Geometry, volume 2..Springer, 2016. MR 3495524, 10.1007/978-3-662-49445-5
Reference: [5] Lněnička, R., Matúš, F.: On Gaussian conditional independence structures..Kybernetika 43 (2007), 3, 327-342. MR 2362722
Reference: [6] Lovász, L.: Three short proofs in graph theory..J. Combinat. Theory, Series B 19 (1975), 3, 269-271. MR 0396344, 10.1016/0095-8956(75)90089-1
Reference: [7] Matúš, F.: Conditional independence structures examined via minors..Ann. Math. Artif. Intell. 21 (1997), 1, 99-130. MR 1479010, 10.1023/A:1018957117081
Reference: [8] Nelson, P.: Almost all matroids are non-representable..Bull. London Math. Soc. 50 (2018), 245-248. MR 3830117, 10.1112/blms.12141
Reference: [9] Inc., OEIS Foundation: The On-Line Encyclopedia of Integer Sequences..Towards Math. Assist., 130-130. 10.1515/9780691197944-009
Reference: [10] Piff, M. J., Welsh, D. J. A.: On the number of combinatorial geometries..Bull. London Math. Soc. 3 (1071), 1, 55-56. MR 0282867, 10.1112/blms/3.1.55
Reference: [11] Sadeghi, K.: Faithfulness of probability distributions and graphs..J. Machine Learning Res. 18 (2017), 1, 5429-5457. MR 3763782
Reference: [12] Šimecek, P.: Classes of gaussian, discrete and binary representable independence models have no finite characterization..In: Proc. Prague Stochastics 2006, volume 400, pp. 622-631.
Reference: [13] Sörensson, N., Een, N.: MiniSat v1.13 - A SAT Solver with Conflict-Clause Minimization, 2005..
Reference: [14] Sullivant, S.: Gaussian conditional independence relations have no finite complete characterization..J. Pure Appl. Algebra 213 (2009), 8, 1502-1506. MR 2517987, 10.1016/j.jpaa.2008.11.026
Reference: [15] Developers, The Sage: SageMath, the Sage Mathematics Software System (Version 8.0), 2017..
Reference: [16] Thurley, M.: sharpSAT - Counting Models with Advanced Component Caching and Implicit BCP..In: Theory and Applications of Satisfiability Testing - SAT 2006 (A. Biere and C. P. Gomes, eds.), Springer, Berlin 2006, pp. 424-429. MR 2265424, 10.1007/11814948_38
Reference: [17] Toda, T., Soh, T.: Implementing efficient all solutions SAT solvers..J. Experiment. Algorithm. 21 (2016), 1-44. MR 3568340, 10.1145/2975585
Reference: [18] Welsh, D. J. A.: Matroid Theory..Courier Corporation, 2010. MR 0427112
.

Files

Files Size Format View
Kybernetika_56-2020-6_3.pdf 559.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo