Previous |  Up |  Next

Article

Summary:
Článek popisuje zajímavý fenomén tzv. Benfordova zákona. Po uvedení základních vlastností uvádí několik příkladů z vybraných statistik a textů. V článku je rovněž uvedeno zjednodušené vysvětlení platnosti zákona s využitím vlastností logaritmů a grafu funkce hustoty pravděpodobnosti náhodné veličiny. Závěr je zaměřen na možnost praktického využití Benfordova zákona.
Summary:
This article refers to the Benford's Law, also known as the first-digit law, which is one of the most mysterious law of nature. The article provides the basic characteristic of the law and a simple, intuitive explanation of why and when the law applies. The last part is focused on using the law in case of suspicion that the data are manipulated.
References:
[1] Bellos, A.: Alex za zrcadlem. Jak se čísla odrážejí v životě a život v číslech. (2016). Dokořán.
[2] Hill, T. P.: A statistical derivation of the significant-digit law. (1995). Statistical Science, 10, 354-363. DOI 10.1214/ss/1177009869 | MR 1421567
[3] Hill, T. P.: The First Digit Phenomenon: A century-old observation about an unexpected pattern in many numerical tables applies to the stock market, census statistics and accounting data. (1998). American Scientist, 86(4), 358-363. DOI 10.1511/1998.31.815
[4] Berger, A., Hill, T. P.: A basic theory of Benford’s Law. (2011a). Probability Surveys, 8, 1-126. MR 2846899
[5] Berger, A., Hill, T. P.: Benford’s Law strikes back: No simple explanation in sight for mathematical gem. (2011b). Springer Science, Business Media, LLC, 33(1), 85-91. MR 2774458
[6] Ausloos, M., Herteliu, C., Ileanu, B.: Breakdown of Benford’s law for birth data. (2015). Physica A, 419, 736-745. DOI 10.1016/j.physa.2014.10.041
[7] Kruger, P. S., Yadavalli, V. S. S.: The power of one: The Benford’s law. (2017). South African Journal of Industrial Engineering, 28(2), 1-13. DOI 10.7166/28-2-1753
[8] Holčík, J., Komenda, M.: Matematická biologie: e-learningová učebnice. (Eds.) et al. (2015). [online]. Brno: Masarykova univerzita. http://portal.matematickabiologie.cz/
[9] Hindls, R., Hronová, S.: Benford's Law and possibilities for its use in governmental statistics. (2015). Statistika, 95(2), 54-64.
[10] Fewster, R. M.: A simple explanation of Benford's Law. (2009). The American Statistician, 63(1), 26-32. DOI 10.1198/tast.2009.0005 | MR 2655700
[11] Mir, T. A.: The law of the leading digits and the world religions. (2012). Physica A, 391, 792-798. DOI 10.1016/j.physa.2011.09.001
[12] Pietronero, L., Tosatti, E.., Tosatti, V., Vespignani, A.: Explaining the uneven distribution of numbers in nature: the laws of Benford and Zipf. (2001). PhysicaA, 293, 297-304. DOI 10.1016/S0378-4371(00)00633-6
[13] Nigrini, M., J.: Taxpayer compliance application of Benford’s law. (1996). Journal of the American Taxation Association, 18(1), 72-92.
[14] Seiber, J., Zahrádka, J.: O čem pojednává Benfordův zákon. (2016). Matematika - fyzika - informatika, 25(2), 89-98. http://mfi.upol.cz/files/25/2502/mfi_2502_089_098.pdf
[15] Durtschi, C., Hillison, W., Pacini, C.: The effective use of Benford’s Law to assist in detecting fraud in accounting data. (2004). Journal of Forensic Accounting, V, 17-34.
[16] Diekmann, A.: Not the first digit! Using Benford’s Law to detect fraudulent scientific data. (2007). Journal of Applied Statistics, 34(3), 321-329. DOI 10.1080/02664760601004940 | MR 2380543
[17] Scott, P. D., Fasli, M.: Benford’s Law: An empirical investigation and a novel explanation. (2001). CSM Technical Report 349. https://cswww.essex.ac.uk/technical-reports/2001/CSM-349.pdf
[18] Burke, J., Kincanon, E.: Benford law and physical constants - The distribution of initial digits. (1991). American Journal of Physics, 59(10), 952. DOI 10.1119/1.16838
[19] Sambridge, M.., Tkalčić, H., Jackson, A.: Benford’s law in the natural sciences. (2010). Geophysical Research Letters, 37(22). https://doi.org/10.1029/2010GL044830 DOI 10.1029/2010GL044830
[20] Beer, T. W.: Terminal digit preference: beware of Benford’s law. (2009). Journal of Clinical Pathology, 62, 192. DOI 10.1136/jcp.2008.061721
[21] Benford, F.: The law of anomalous numbers. (1938). Proc. American Philosophical Society, 78(4), 551-572.
[22] Marchi, S., Hamilton, J. T.: Assessing the accuracy of self-reported data: an evaluation of the toxics release inventory. (2006). Journal of Risk and Uncertainty, 32(1), 57-76. DOI 10.1007/s10797-006-6666-3
[23] Mebane, W. R., Jr.: Fraud in the 2009 presidential election in Iran?. (2010). Chance, 23(1), 6-15. DOI 10.1080/09332480.2010.10739785
Partner of
EuDML logo