Previous |  Up |  Next

Article

Title: Units in quasigroups with classical Bol--Moufang type identities (English)
Author: Didurik, Natalia
Author: Shcherbacov, Victor
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 61
Issue: 4
Year: 2020
Pages: 427-435
Summary lang: English
.
Category: math
.
Summary: We proceed with Kunen's research about existence of units (left, right, two-sided) in quasigroups with classical Bol--Moufang type identities, listed in paper Extra loops II, by F. Fenyves (1969). We consider those Bol--Moufang identities where it has not been decided yet whether a quasigroup fulfilling this identity has to possess a left or right identity. We also provide a table of all Moufang--Bol identities, indicating at each whether it describes the variety of groups, and whether it forces out the left unit or the right unit. (English)
Keyword: quasigroup
Keyword: Bol--Moufang type identity
Keyword: right unit
Keyword: left unit
MSC: 20N05
idZBL: Zbl 07332720
idMR: MR4230951
DOI: 10.14712/1213-7243.2020.039
.
Date available: 2021-02-25T12:32:39Z
Last updated: 2023-01-02
Stable URL: http://hdl.handle.net/10338.dmlcz/148656
.
Reference: [1] Akhtar R., Arp A., Kaminski M., Van Exel J., Vernon D., Washington C.: The varieties of Bol–Moufang quasigroups defined by a single operation.Quasigroups Related Systems 20 (2012), no. 1, 1–10. MR 3013362
Reference: [2] Belousov V. D.: Foundations of the Theory of Quasigroups and Loops.Nauka, Moscow, 1967 (Russian). MR 0218483
Reference: [3] Birkhoff G.: Lattice Theory.American Mathematical Society Colloquium Publications, XXV, American Mathematical Society, Providence, 1967. Zbl 0537.06001, MR 0227053
Reference: [4] Birkhoff G.: Lattice Theory.Nauka, Moscow, 1984 (Russian). Zbl 0537.06001, MR 0751233
Reference: [5] Chein O., Orlik-Pflugfelder H.: The smallest Moufang loop.Arch. Math. (Basel) 22 (1971), 573–576. MR 0297914, 10.1007/BF01222620
Reference: [6] Coté B., Harvill B., Huhn M., Kirchman A.: Classification of loops of generalized Bol–Moufang type.Quasigroups Related Systems 19 (2011), no. 2, 193–206. MR 2932940
Reference: [7] Dart B. C., Goodaire E. G.: Loop rings satisfying identities of Bol–Moufang type.J. Algebra Appl. 8 (2009), no. 3, 401–411. MR 2535998, 10.1142/S0219498809003394
Reference: [8] Evans T.: Homomorphisms of non-associative systems.J. London Math. Soc. 24 (1949), 254–260. MR 0032664, 10.1112/jlms/s1-24.4.254
Reference: [9] Fenyves F.: Extra loops. II. On loops with identities of Bol–Moufang type.Publ. Math. Debrecen 16 (1969), 187–192. MR 0262409
Reference: [10] Gagola S. M.: How and why Moufang loops behave like groups.Quasigroups Related Systems 19 (2011), no. 1, 1–22. MR 2850316
Reference: [11] Galkin V. M.: Quasigroups.Itogi Nauki i Tekhniki, Algebra. Topology. Geometry 26 (1988), 3–44 (Russian). MR 0978392
Reference: [12] Horosh G., Shcherbacov V., Tcachenco A., Yatsko T.: On groupoids with classical Bol–Moufang type identities.Proc. of the Fifth Conf. of Mathematical Society of Moldova, IMCS-55, 2019, Chisinau, 2019, pages 77–84.
Reference: [13] Izbash V. I., Shcherbacov V. A.: On quasigroups with Moufang identity.in Abstracts of The Third International Conf. in memory of M. I. Kargapolov (1928-1976), Krasnoyarsk, 1993, pages 134–135 (Russian). Zbl 1027.20507, MR 1788977
Reference: [14] Jaíyéolá T. G., Ilojide E., Olatinwo M. O., Smarandache F.: On the classification of Bol–Moufang type of some varieties of quasi neutrosophic triplet loop (Fenyves BCI-Algebras).Symmetry 10 (2018), 427, 16 pages. MR 4022405, 10.3390/sym10100427
Reference: [15] Kinyon M., Kunen K.: The structure of extra loops.Quasigroups Related Systems 12 (2004), 39–60. MR 2130578
Reference: [16] Kunen K.: Moufang quasigroups.J. Algebra 183 (1996), no. 1, 231–234. MR 1397396, 10.1006/jabr.1996.0216
Reference: [17] Kunen K.: Quasigroups, loops and associative laws.J. Algebra 185 (1996), no. 1, 194–204. MR 1409983, 10.1006/jabr.1996.0321
Reference: [18] Kuroš A. G.: Theory of Groups.Nauka, Moscow, 1967 (Russian). MR 0249495
Reference: [19] McCune W.: Prover9 and Mace4.University of New Mexico, www.cs.unm.edu/̴ mccune/prover9, 2005–2010.
Reference: [20] Pflugfelder H. O.: Quasigroups and Loops: Introduction.Sigma Series in Pure Mathematics, 7, Heldermann, Berlin, 1990. Zbl 0715.20043, MR 1125767
Reference: [21] Scerbacova A. V., Shcherbacov V. A.: On spectrum of medial $T_2$-quasigroups.Bul. Acad. Ştiinţe Repub. Mold. Mat. 2(81) (2016), 143–154. MR 3570802
Reference: [22] Shcherbacov V.: Elements of Quasigroup Theory and Applications.Monographs and Research Notes in Mathematics, CRC Press, Boca Raton, 2017. MR 3644366
Reference: [23] Shcherbacov V., Izbash V.: On quasigroups with Moufang identity.Bul. Acad. Ştiinţe Repub. Mold. Mat. 2 (1998), 109–116, 133, 138. Zbl 1027.20507, MR 1788977
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_61-2020-4_3.pdf 177.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo