Previous |  Up |  Next

Article

Title: Constructing and embedding mutually orthogonal Latin squares: reviewing both new and existing results (English)
Author: Donovan, Diane M.
Author: Grannell, Mike
Author: Yazıcı, Emine Ş.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 61
Issue: 4
Year: 2020
Pages: 437-457
Summary lang: English
.
Category: math
.
Summary: We review results for the embedding of orthogonal partial Latin squares in orthogonal Latin squares, comparing and contrasting these with results for embedding partial Latin squares in Latin squares. We also present a new construction that uses the existence of a set of $t$ mutually orthogonal Latin squares of order $n$ to construct a set of $2t$ mutually orthogonal Latin squares of order $n^t$. (English)
Keyword: embedding
Keyword: mutually orthogonal Latin square
MSC: 05B15
idZBL: Zbl 07332721
idMR: MR4230952
DOI: 10.14712/1213-7243.2021.003
.
Date available: 2021-02-25T12:36:45Z
Last updated: 2023-01-02
Stable URL: http://hdl.handle.net/10338.dmlcz/148657
.
Reference: [1] Abel R. J. R., Li Y.: Some constructions for $t$ pairwise orthogonal diagonal Latin squares based on difference matrices.Discrete Math. 338 (2015), no. 4, 593–607. MR 3300747, 10.1016/j.disc.2014.11.018
Reference: [2] Andersen L. D., Hilton A. J. W.: Thanks Evans!.Proc. London Math. Soc. (3) 47 (1983), no. 3, 507–522. MR 0716801
Reference: [3] Andersen L. D., Hilton A. J. W., Rodger C. A.: A solution to the embedding problem for partial idempotent Latin squares.J. London Math. Soc. (2) 26 (1982), no. 1, 21–27. MR 0667240, 10.1112/jlms/s2-26.1.21
Reference: [4] Barber B., Kühn D., Lo A., Osthus D., Taylor A.: Clique decompositions of multipartite graphs and completion of Latin squares.J. Combin. Theory Ser. A. 151 (2017), 146–201. MR 3663493, 10.1016/j.jcta.2017.04.005
Reference: [5] Belyavskaya G. B., Lumpov A. D.: Cross product of two systems of quasigroups and its use in constructing partially orthogonal quasigroups.Mat. Issled., Issled. Teor. Binarnykh i $n$-arnykh Kvazigrupp 83 (1985), 26–38 (Russian). MR 0807271
Reference: [6] Bryant D., Buchanan M.: Embedding partial totally symmetric quasigroups.J. Combin. Theory Ser. A 114 (2007), no. 6, 1046–1088. MR 2337238, 10.1016/j.jcta.2006.10.009
Reference: [7] Bryant D., Horsley D.: A proof of Lindner's conjecture on embeddings of partial Steiner triple systems.J. Comb. Des. 17 (2009), no. 1, 63–89. MR 2475426, 10.1002/jcd.20189
Reference: [8] Colbourn C. J.: The complexity of completing partial Latin squares.Discrete Appl. Math. 8 (1984), 25–30. MR 0739595, 10.1016/0166-218X(84)90075-1
Reference: [9] Colbourn C. J., Dinitz J. H.: Handbook of Combinatorial Designs.Chapman and Hall/CRC, 2007. MR 2246267
Reference: [10] Colbourn C. J., Zhu L.: The spectrum of $R$-orthogonal Latin squares.Combinatorics Advances, Tehran, 1994, Math. Appl., 329, Kluwer Acad. Publ., Dordrecht, 1995, pages 49–75. MR 1366841
Reference: [11] Cruse A. B.: On embedding incomplete symmetric Latin squares.J. Combinatorial Theory Ser. A. 16 (1974), 18–22. MR 0329925, 10.1016/0097-3165(74)90068-5
Reference: [12] Damerell R. M.: On Smetaniuk's construction for Latin squares and the Andersen–Hilton theorem.Proc. London Math. Soc. (3) 47 (1983), no. 3, 523–526. MR 0716802
Reference: [13] Dietrich H., Wanless I. M.: Small partial Latin squares that embed in an infinite group but not into any finite group.J. Symbolic Comput. 86 (2018), 142–152. MR 3725217, 10.1016/j.jsc.2017.04.002
Reference: [14] Donovan D., Grannell M., Yazıcı E. Ş.: Embedding partial Latin squares in Latin squares with many mutually orthogonal mates.Discrete Math. 343 (2020), no. 6, 111835, 6 pages. MR 4062293, 10.1016/j.disc.2020.111835
Reference: [15] Donovan D. M., Yazıcı E. Ş.: A polynomial embedding of pairs of orthogonal partial Latin squares.J. Combin. Theory Ser. A 126 (2014), 24–34. MR 3213305, 10.1016/j.jcta.2014.04.003
Reference: [16] Drake D. A., Lenz H.: Orthogonal Latin squares with orthogonal subsquares.Arch. Math. (Basel) 34 (1980), no. 6, 565–576. MR 0596867, 10.1007/BF01225000
Reference: [17] Evans A. B.: Orthomorphism Graphs of Groups.Lecture Notes in Mathematics, 1535, Springer, Berlin, 1992. MR 1222645
Reference: [18] Evans T.: Embedding incomplete latin squares.Amer. Math. Monthly 67 (1960), 958–961. MR 0122728, 10.1080/00029890.1960.11992032
Reference: [19] Falcón R. M., Falcón Ó. J., Núñez J.: Computing the sets of totally symmetric and totally conjugate orthogonal partial Latin squares by means of a SAT solver.Proc. of 17th Int. Conf. Computational and Mathematical Methods in Science and Engineering, CMMSE 2017, pages 841–852.
Reference: [20] Ganter B.: Endliche Vervollständigung endlicher partieller Steinerscher Systeme.Arch. Math. (Basel) 22 (1971), 328–332 (German). MR 0294145, 10.1007/BF01222584
Reference: [21] Ganter B.: Partial pairwise balanced designs.Colloq. Int. Sulle Teorie Combinatorie, Rome, 1973, Tomo II, Accad. Naz. Lincei, 1976, pages 377–380. MR 0472553
Reference: [22] Gustavsson T.: Decompositions of Large Graphs and Digraphs with High Minimum Degree.Ph.D. Thesis, Stockholm University, Stockholm, 1991.
Reference: [23] Hall M.: An existence theorem for Latin squares.Bull. Amer. Math. Soc. 51 (1945), 387–388. MR 0013111, 10.1090/S0002-9904-1945-08361-X
Reference: [24] Hall P.: On representative subsets.Classic Papers in Combinatorics, Birkhäuser, Boston, 1987, pages 58–62.
Reference: [25] Heinrich K., Zhu L.: Existence of orthogonal Latin squares with aligned subsquares.Discrete Math. 59 (1986), no. 1–2, 69–78. MR 0837956, 10.1016/0012-365X(86)90070-1
Reference: [26] Hilton A. J. W., Rodger C. A., Wojciechowski J.: Prospects for good embeddings of pairs of partial orthogonal Latin squares and of partial Kirkman triple systems.J. Combin. Math. Combin. Comput. 11 (1992), 83–91. MR 1160067
Reference: [27] Hirsch R., Jackson M.: Undecidability of representability as binary relations.J. Symbolic Logic 77 (2012), no. 4, 1211–1244. MR 3051622, 10.2178/jsl.7704090
Reference: [28] Horton J. D.: Sub-latin squares and incomplete orthogonal arrays.J. Combinatorial Theory Ser. A 16 (1974), 23–33. MR 0347641, 10.1016/0097-3165(74)90069-7
Reference: [29] Jenkins P.: Embedding a restricted class of partial $K_4$ designs.Ars Combin. 77 (2005), 295–303. MR 2180852
Reference: [30] Jenkins P.: Embedding a Latin square in a pair of orthogonal Latin squares.J. Combin. Des. 14 (2006), no. 4, 270–276. MR 2229878, 10.1002/jcd.20087
Reference: [31] Jenkins P.: Partial graph design embeddings and related problems.Bull. Austral. Math. Soc. 73 (2006), 159–160. 10.1017/S0004972700038715
Reference: [32] Keevash P.: Coloured and directed designs.I. Bárány, G. Katona, A. Sali eds., Building Bridges II., Bolyai Society Mathematical Studies, 28, Springer, Berlin, 2019. 10.1007/978-3-662-59204-5_9
Reference: [33] König D.: Über Graphen und ihre Anwendungen auf Determinantentheorie und Mengenlehre.Math. Ann. 77 (1916), no. 4, 453–465 (German). MR 1511872, 10.1007/BF01456961
Reference: [34] Luria Z.: New bounds on the number of $n$-queens configurations.available at arXiv: 1705.05225v2 [math.CO] (2017), 12 pages.
Reference: [35] Lindner C. C.: On completing latin rectangles.Canad. Math. Bull. 13 (1970), no. 1, 65–68. MR 0262092, 10.4153/CMB-1970-013-x
Reference: [36] Lindner C. C.: Finite embedding theorems for partial Latin squares, quasi-groups, and loops.J. Combinatorial Theory Ser. A. 13 (1972), 339–345. MR 0314649, 10.1016/0097-3165(72)90067-2
Reference: [37] Lindner C. C.: A survey of finite embedding theorems for partial Latin squares and quasigroups.Graphs and Combinatorics, Lecture Notes in Math., 406, Springer, Berlin, 1974, pages 109–152. MR 0379211, 10.1007/BFb0066437
Reference: [38] Lindner C. C.: A partial Steiner triple system of order $n$ can be embedded in a Steiner triple system of order $6n+3$.J. Comb. Theory Ser. A. 18 (1975), 349–351. MR 0379223, 10.1016/0097-3165(75)90046-1
Reference: [39] Lindner C. C.: Embedding orthogonal partial Latin squares.Proc. Amer. Math. Soc. 59 (1976), no. 1, 184–186. MR 0409227, 10.1090/S0002-9939-1976-0409227-2
Reference: [40] Lindner C. C., Cruse A. B.: Small embeddings for partial semisymmetric and totally symmetric quasigroups.J. London Math. Soc. (2) 12 (1976), 479–484. MR 0432796, 10.1112/jlms/s2-12.4.479
Reference: [41] Mann H. B.: The construction of orthogonal Latin squares.Ann. Math. Statistics 13 (1942), 418–423. MR 0007736, 10.1214/aoms/1177731539
Reference: [42] Mann H. B., Ryser H. J.: Systems of distinct representatives.Amer. Math. Monthly 60 (1953), no. 6, 397–401. MR 0055293, 10.1080/00029890.1953.11988312
Reference: [43] Nosov V. A., Sachkov V. N., Tarakanov V. E.: Combinatorial analysis (matrix problems, the theory of sampling).Probability Theory. Mathematical Statistics. Theoretical Cybernetics. 188, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Informatsii, Moscow 18 (1981), 53–93, 188 (Russian). MR 0625132
Reference: [44] Quackenbush R. W.: Near vector spaces over GF$(q)$ and $(v,q+1,1)$-BIBDs.Linear Algebra Appl. 10 (1975), 259–266. MR 0369099
Reference: [45] Rodger C. A.: Embedding partial Mendelsohn triple systems.Discrete Math. 65 (1987), no. 2, 187–196. MR 0893080, 10.1016/0012-365X(87)90141-5
Reference: [46] Rodger C. A.: Recent results on the embedding of Latin squares and related structures, cycle systems and graph designs.Matematiche (Catania) 47 (1992), no. 2, 295–311. MR 1275861
Reference: [47] Ryser H. J.: A combinatorial theorem with an application to Latin rectangles.Proc. Amer. Math. Soc. 2 (1951), 550–552. MR 0042361, 10.1090/S0002-9939-1951-0042361-0
Reference: [48] Smetaniuk B.: A new construction on Latin squares. I. A proof of the Evans conjecture.Ars Combin. 11 (1981), 155–172. MR 0629869
Reference: [49] Stevens B., Mendelsohn E.: New recursive methods for transversal covers.J. Combin. Des. 7 (1999), no. 3, 185–203. MR 1681504, 10.1002/(SICI)1520-6610(1999)7:3<185::AID-JCD3>3.0.CO;2-3
Reference: [50] Treash A. C.: Inverse Property Loops and Related Steiner Triple Systems.Ph.D. Thesis, Emory University, Atlanta, 1969. MR 2618359
Reference: [51] Treash C.: The completion of finite incomplete Steiner triple systems with application to loop theory.Combinatorial Theory, Ser. A. 10 (1971), 259–265. MR 0274634, 10.1016/0097-3165(71)90030-6
Reference: [52] Vodička M., Zlatoš P.: The finite embeddability property for IP loops and local embeddability of groups into finite IP loops.Ars Math. Contemp. 17 (2019), no. 2, 535–554. MR 4041359, 10.26493/1855-3974.1884.5cb
Reference: [53] Van der Waerden B. L.: Ein Satz über Klasseneinteilungen von endlichen Mengen.Abh. Math. Sem. Univ. Hamburg 5 (1927), no. 1, 185–188 (German). MR 3069474, 10.1007/BF02952519
Reference: [54] Wallis W. D., Zhu L.: Orthogonal Latin squares with small subsquares.Combinatorial Mathematics, X, Adelaide, 1982, Lecture Notes in Math., 1036, Springer, Berlin, 1983, pages 398–409. MR 0731596
Reference: [55] Wanless I. M., Webb B. S.: Small partial Latin squares that cannot be embedded in a Cayley table.Australas. J. Combin. 67 (2017), no. 2, 352–363. MR 3607832
Reference: [56] Zhu L.: Orthogonal Latin squares with subsquares.Discrete Math. 48 (1984), no. 2–3, 315–321. MR 0737274, 10.1016/0012-365X(84)90191-2
Reference: [57] Zhu L.: Some results on orthogonal Latin squares with orthogonal subsquares.Utilitas Math. 25 (1984), 241–248. MR 0752862
Reference: [58] Zhu L., Zhang H.: Completing the spectrum of $r$-orthogonal latin squares.Discrete Math. 268 (2003), no. 1–3, 343–349. MR 1983294, 10.1016/S0012-365X(03)00053-0
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_61-2020-4_4.pdf 499.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo