Previous |  Up |  Next

Article

Title: Polynomial expansiveness and admissibility of weighted Lebesgue spaces (English)
Author: Hai, Pham Viet
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 71
Issue: 1
Year: 2021
Pages: 111-136
Summary lang: English
.
Category: math
.
Summary: The paper investigates the interaction between the notions of expansiveness and admissibility. We consider a polynomially bounded discrete evolution family and define an admissibility notion via the solvability of an associated difference equation. Using the admissibility of weighted Lebesgue spaces of sequences, we give a characterization of discrete evolution families which are polynomially expansive and also those which are expansive in the ordinary sense. Thereafter, we apply the main results in order to infer continuous-time characterizations for the notions of expansiveness through the solvability of an associated integral equation. (English)
Keyword: polynomial expansiveness
Keyword: evolution family
MSC: 34D05
MSC: 34E05
idZBL: 07332708
idMR: MR4226473
DOI: 10.21136/CMJ.2020.0195-19
.
Date available: 2021-03-12T16:11:01Z
Last updated: 2023-04-03
Stable URL: http://hdl.handle.net/10338.dmlcz/148731
.
Reference: [1] Barreira, L., Valls, C.: Polynomial growth rates.Nonlinear Anal., Theory Methods Appl. 71 (2009), 5208-5219. Zbl 1181.34046, MR 2560190, 10.1016/j.na.2009.04.005
Reference: [2] Bătăran, F., Preda, C., Preda, P.: Extending some results of L. Barreira and C. Valls to the case of linear skew-product semiflows.Result. Math. 72 (2017), 965-978. Zbl 1375.37091, MR 3684470, 10.1007/s00025-017-0666-8
Reference: [3] Coffman, C. V., Schäffer, J. J.: Dichotomies for linear difference equations.Math. Ann. 172 (1967), 139-166. Zbl 0189.40303, MR 0214946, 10.1007/BF01350095
Reference: [4] Daletskij, Ju. L., Krejn, M. G.: Stability of Solutions of Differential Equations in Banach Space.Translations of Mathematical Monographs 43. American Mathematical Society, Providence (1974). Zbl 0286.34094, MR 0352639, 10.1090/mmono/043
Reference: [5] Hai, P. V.: On the polynomial stability of evolution families.Appl. Anal. 95 (2016), 1239-1255. Zbl 1343.34143, MR 3479001, 10.1080/00036811.2015.1058364
Reference: [6] Hai, P. V.: Polynomial stability of evolution cocycles and Banach function spaces.Bull. Belg. Math. Soc.---Simon Stevin 26 (2019), 299-314. Zbl 07094830, MR 3975830, 10.36045/bbms/1561687567
Reference: [7] Levitan, B. M., Zhikov, V. V.: Almost Periodic Functions and Differential Equations.Cambridge University Press, Cambridge (1982). Zbl 0499.43005, MR 0690064
Reference: [8] Li, T.: Die Stabilitätsfrage bei Differenzengleichungen.Acta Math. 63 (1934), 99-141 German \99999JFM99999 60.0397.03. MR 1555392, 10.1007/BF02547352
Reference: [9] Massera, J. L., Schäffer, J. J.: Linear Differential Equations and Function Spaces.Pure and Applied Mathematics 21. Academic Press, New York (1966). Zbl 0243.34107, MR 0212324
Reference: [10] Megan, M., Sasu, A. L., Sasu, B.: Theorems of Perron type for uniform exponential dichotomy of linear skew-product semiflows.Bull. Belg. Math. Soc.---Simon Stevin 10 (2003), 1-21. Zbl 1045.34022, MR 2032321, 10.36045/bbms/1047309409
Reference: [11] Megan, M., Sasu, B., Sasu, A. L.: Exponential expansiveness and complete admissibility for evolution families.Czech. Math. J. 54 (2004), 739-749. Zbl 1080.34546, MR 2086730, 10.1007/s10587-004-6422-8
Reference: [12] Minh, N. V., Räbiger, F., Schnaubelt, R.: Exponential stability, exponential expansiveness, and exponential dichotomy of evolution equations on the half-line.Integral Equations Oper. Theory 32 (1998), 332-353. Zbl 0977.34056, MR 1652689, 10.1007/BF01203774
Reference: [13] Perron, O.: Die Stabilitätsfrage bei Differentialgleichungen.Math. Z. 32 (1930), 703-728 German \99999JFM99999 56.1040.01. MR 1545194, 10.1007/BF01194662
Reference: [14] Popa, I.-L., Ceauşu, T., Megan, M.: Nonuniform power instability and Lyapunov sequences.Appl. Math. Comput. 247 (2014), 969-975. Zbl 1338.34101, MR 3270899, 10.1016/j.amc.2014.09.051
Reference: [15] Popa, I.-L., Megan, M., Ceauşu, T.: Exponential dichotomies for linear discrete-time systems in Banach spaces.Appl. Anal. Discrete Math. 6 (2012), 140-155. Zbl 1289.39030, MR 2952610, 10.2298/AADM120319008P
Reference: [16] Preda, C., Preda, P., Petre, A.-P.: On the uniform exponential stability of linear skew-product three-parameter semiflows.Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér. 54 (2011), 269-279. Zbl 1274.34174, MR 2856303
Reference: [17] Sasu, B.: New criteria for exponential expansiveness of variational difference equations.J. Math. Anal. Appl. 327 (2007), 287-297. Zbl 1115.39005, MR 2277412, 10.1016/j.jmaa.2006.04.024
Reference: [18] Slyusarchuk, V. E.: Instability of difference equations with respect to the first approximation.Differ. Uravn. 22 (1986), 722-723 Russian. Zbl 0606.39003, MR 0843238
.

Files

Files Size Format View
CzechMathJ_71-2021-1_5.pdf 382.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo