Previous |  Up |  Next

Article

Title: A note on Skolem-Noether algebras (English)
Author: Han, Juncheol
Author: Lee, Tsiu-Kwen
Author: Park, Sangwon
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 71
Issue: 1
Year: 2021
Pages: 137-154
Summary lang: English
.
Category: math
.
Summary: The paper was motivated by Kovacs' paper (1973), Isaacs' paper (1980) and a recent paper, due to Brešar et al. (2018), concerning Skolem-Noether algebras. Let $K$ be a unital commutative ring, not necessarily a field. Given a unital $K$-algebra $S$, where $K$ is contained in the center of $S$, $n\in \mathbb N$, the goal of this paper is to study the question: when can a homomorphism $\phi \colon {\rm M}_n(K)\to {\rm M}_n(S)$ be extended to an inner automorphism of ${\rm M}_n(S)$? As an application of main results presented in the paper, it is proved that if $S$ is a semilocal algebra with a central separable subalgebra $R$, then any homomorphism from $R$ into $S$ can be extended to an inner automorphism of $S$. (English)
Keyword: Skolem-Noether algebra
Keyword: (inner) automorphism
Keyword: matrix algebra
Keyword: central simple algebra
Keyword: central separable algebra
Keyword: semilocal ring
Keyword: unique factorization domain (UFD)
Keyword: stably finite ring
Keyword: Dedekind-finite ring
MSC: 16K20
MSC: 16S50
MSC: 16W20
idZBL: 07332709
idMR: MR4226474
DOI: 10.21136/CMJ.2020.0215-19
.
Date available: 2021-03-12T16:11:28Z
Last updated: 2023-04-03
Stable URL: http://hdl.handle.net/10338.dmlcz/148732
.
Reference: [1] Brešar, M., Hanselka, C., Klep, I., Volčič, J.: Skolem-Noether algebras.J. Algebra 498 (2018), 294-314. Zbl 06834833, MR 3754416, 10.1016/j.jalgebra.2017.11.045
Reference: [2] DeMeyer, F., Ingraham, E.: Separable Algebras over Commutative Rings.Lecture Notes in Mathematics 181, Springer, Berlin (1971). Zbl 0215.36602, MR 0280479, 10.1007/BFb0061226
Reference: [3] Herstein, I. N.: Noncommutative Rings.The Carus Mathematical Monographs 15, Mathematical Association of America, New York (1968). Zbl 0177.05801, MR 0227205, 10.5948/upo9781614440154
Reference: [4] Isaacs, I. M.: Automorphisms of matrix algebras over commutative rings.Linear Algebra Appl. 31 (1980), 215-231. Zbl 0434.16015, MR 0570392, 10.1016/0024-3795(80)90221-9
Reference: [5] Kaplansky, I.: Fields and Rings.Chicago Lectures in Mathematics, The University of Chicago Press, Chicago (1969). Zbl 0238.16001, MR 0269449
Reference: [6] Kovacs, A.: Homomorphisms of matrix rings into matrix rings.Pac. J. Math. 49 (1973), 161-170. Zbl 0275.16019, MR 0447332, 10.2140/pjm.1973.49.161
Reference: [7] Lam, T. Y.: A First Course in Noncommutative Rings.Graduate Texts in Mathematics 131, Springer, New York (1991). Zbl 0728.16001, MR 1125071, 10.1007/978-1-4684-0406-7
Reference: [8] McCoy, N. H.: Subdirectly irreducible commutative rings.Duke Math. J. 12 (1945), 381-387. Zbl 0060.05901, MR 0012266, 10.1215/S0012-7094-45-01232-4
Reference: [9] Milinski, A.: Skolem-Noether theorems and coalgebra actions.Commun. Algebra 21 (1993), 3719-3725. Zbl 0793.16030, MR 1231628, 10.1080/00927879308824760
Reference: [10] Rosenberg, A., Zelinsky, D.: Automorphisms of separable algebras.Pac. J. Math. 11 (1961), 1109-1117. Zbl 0116.02501, MR 0148709, 10.2140/pjm.1961.11.1109
Reference: [11] Rowen, L.: Some results on the center of a ring with polynomial identity.Bull. Am. Math. Soc. 79 (1973), 219-223. Zbl 0252.16007, MR 0309996, 10.1090/S0002-9904-1973-13162-3
Reference: [12] Srivastava, J. B., Shah, S. K.: Semilocal and semiregular group rings.Indag. Math. 42 (1980), 347-352. Zbl 0442.16010, MR 0587061, 10.1016/1385-7258(80)90035-9
.

Files

Files Size Format View
CzechMathJ_71-2021-1_6.pdf 330.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo