Previous |  Up |  Next

Article

Title: On $p$-adic Euler constants (English)
Author: Bharadwaj, Abhishek
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 71
Issue: 1
Year: 2021
Pages: 283-308
Summary lang: English
.
Category: math
.
Summary: The goal of this article is to associate a $p$-adic analytic function to the Euler constants $\gamma _p (a, F)$, study the properties of these functions in the neighborhood of $s=1$ and introduce a $p$-adic analogue of the infinite sum $\sum _{n \ge 1} f(n) / n$ for an algebraic valued, periodic function $f$. After this, we prove the theorem of Baker, Birch and Wirsing in this setup and discuss irrationality results associated to $p$-adic Euler constants generalising the earlier known results in this direction. Finally, we define and prove certain properties of $p$-adic Euler-Briggs constants analogous to the ones proved by Gun, Saha and Sinha. (English)
Keyword: $p$-adic Euler-Lehmer constant
Keyword: linear forms in logarithms
MSC: 11J91
idZBL: 07332717
idMR: MR4226482
DOI: 10.21136/CMJ.2020.0336-19
.
Date available: 2021-03-12T16:15:40Z
Last updated: 2023-04-03
Stable URL: http://hdl.handle.net/10338.dmlcz/148740
.
Reference: [1] Apostol, T. M.: Introduction to Analytic Number Theory.Undergraduate Texts in Mathematics. Springer, New York (1976). Zbl 0335.10001, MR 0434929, 10.1007/978-1-4757-5579-4
Reference: [2] Baker, A., Birch, B. J., Wirsing, E. A.: On a problem of Chowla.J. Number Theory 5 (1973), 224-236. Zbl 0267.10065, MR 0340203, 10.1016/0022-314X(73)90048-6
Reference: [3] Bharadwaj, A. T.: A short note on generalized Euler-Briggs constants.Int. J. Number Theory 16 (2020), 823-839. Zbl 07205429, MR 4093385, 10.1142/S1793042120500426
Reference: [4] Brumer, A.: On the units of algebraic number fields.Mathematika, Lond. 14 (1967), 121-124. Zbl 0171.01105, MR 0220694, 10.1112/S0025579300003703
Reference: [5] Chatterjee, T., Gun, S.: The digamma function, Euler-Lehmer constants and their $p$-adic counterparts.Acta Arith. 162 (2014), 197-208. Zbl 1285.11105, MR 3167891, 10.4064/aa162-2-4
Reference: [6] Cohen, H.: Number Theory. Volume II. Analytic and Modern Tools.Graduate Texts in Mathematics 240. Springer, New York (2007). Zbl 1119.11002, MR 2312338, 10.1007/978-0-387-49894-2
Reference: [7] Diamond, J.: The $p$-adic log gamma function and $p$-adic Euler constants.Trans. Am. Math. Soc. 233 (1977), 321-337. Zbl 0382.12008, MR 0498503, 10.1090/S0002-9947-1977-0498503-9
Reference: [8] Gun, S., Murty, V. K., Saha, E.: Linear and algebraic independence of generalized Euler-Briggs constants.J. Number Theory 166 (2016), 117-136. Zbl 1415.11100, MR 3486268, 10.1016/j.jnt.2016.02.004
Reference: [9] Gun, S., Saha, E., Sinha, S. B.: Transcendence of generalized Euler-Lehmer constants.J. Number Theory 145 (2014), 329-339. Zbl 1325.11071, MR 3253307, 10.1016/j.jnt.2014.06.010
Reference: [10] Koblitz, N.: Interpretation of the $p$-adic log gamma function and Euler constants using the Bernoulli measure.Trans. Am. Math. Soc. 242 (1978), 261-269. Zbl 0358.12010, MR 0491622, 10.1090/S0002-9947-1978-0491622-3
Reference: [11] Kubota, T., Leopoldt, H. W.: Eine $p$-adische Theorie der Zetawerte. I. Einführung der $p$-adischen Dirichletschen $L$-Funktionen.J. Reine Angew. Math. 214/215 (1964), 328-339 German. Zbl 0186.09103, MR 0163900, 10.1515/crll.1964.214-215.328
Reference: [12] Lang, S.: Algebraic Number Theory.Graduate Texts in Mathematics 110. Springer, New York (1994). Zbl 0811.11001, MR 1282723, 10.1007/978-1-4612-0853-2
Reference: [13] Lehmer, D. H.: Euler constants for arithmetical progressions.Acta Arith. 27 (1975), 125-142. Zbl 0302.12003, MR 0369233, 10.4064/aa-27-1-125-142
Reference: [14] Morita, Y.: A $p$-adic analogue of the $\Gamma$-function.J. Fac. Sci., Univ. Tokyo, Sect. I A 22 (1975), 255-266. Zbl 0308.12003, MR 0424762
Reference: [15] Morita, Y.: On the Hurwitz-Lerch $L$-functions.J. Fac. Sci., Univ. Tokyo, Sect. I A 24 (1977), 29-43. Zbl 0356.12019, MR 0441924
Reference: [16] Murty, M. R., Saradha, N.: Transcendental values of the digamma function.J. Number Theory 125 (2007), 298-318. Zbl 1222.11097, MR 2332591, 10.1016/j.jnt.2006.09.017
Reference: [17] Murty, M. R., Pathak, S.: Special values of derivatives of $L$-series and generalized Stieltjes constants.Acta Arith. 184 (2018), 127-138. Zbl 1421.11057, MR 3841150, 10.4064/aa170615-13-3
Reference: [18] Murty, M. R., Saradha, N.: Transcendental values of the $p$-adic digamma function.Acta Arith. 133 (2008), 349-362. Zbl 1253.11077, MR 2457265, 10.4064/aa133-4-4
Reference: [19] Okada, T.: Dirichlet series with periodic algebraic coefficients.J. Lond. Math. Soc., II. Ser. 33 (1986), 13-21. Zbl 0589.10034, MR 0829383, 10.1112/jlms/s2-33.1.13
Reference: [20] Robert, A. M.: A Course in $p$-Adic Analysis.Graduate Texts in Mathematics 198. Springer, New York (2000). Zbl 0947.11035, MR 1760253, 10.1007/978-1-4757-3254-2
Reference: [21] Washington, L. C.: Introduction to Cyclotomic Fields.Graduate Texts in Mathematics 83. Springer, New York (1982). Zbl 0484.12001, MR 0718674, 10.1007/978-1-4684-0133-2
.

Files

Files Size Format View
CzechMathJ_71-2021-1_14.pdf 404.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo