Previous |  Up |  Next

Article

Title: On the Hilbert $2$-class field tower of some imaginary biquadratic number fields (English)
Author: Chems-Eddin, Mohamed Mahmoud
Author: Azizi, Abdelmalek
Author: Zekhnini, Abdelkader
Author: Jerrari, Idriss
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 71
Issue: 1
Year: 2021
Pages: 269-281
Summary lang: English
.
Category: math
.
Summary: Let $\Bbbk =\mathbb {Q} \bigl (\sqrt 2, \sqrt d \bigr )$ be an imaginary bicyclic biquadratic number field, where $d$ is an odd negative square-free integer and $\Bbbk _2^{(2)}$ its second Hilbert $2$-class field. Denote by $G={\rm Gal}(\Bbbk _2^{(2)}/\Bbbk )$ the Galois group of $\Bbbk _2^{(2)}/\Bbbk $. The purpose of this note is to investigate the Hilbert $2$-class field tower of $\Bbbk $ and then deduce the structure of $G$. (English)
Keyword: $2$-class group
Keyword: imaginary biquadratic number field
Keyword: capitulation
Keyword: Hilbert $2$-class field
MSC: 11R11
MSC: 11R27
MSC: 11R29
MSC: 11R37
idZBL: 07332716
idMR: MR4226481
DOI: 10.21136/CMJ.2020.0333-19
.
Date available: 2021-03-12T16:15:11Z
Last updated: 2023-04-03
Stable URL: http://hdl.handle.net/10338.dmlcz/148739
.
Reference: [1] Azizi, A.: Unités de certains corps de nombres imaginaires et abéliens sur $\mathbb Q$.Ann. Sci. Math. Qué. 23 (1999), 15-21 French. Zbl 1041.11072, MR 1721726
Reference: [2] Azizi, A.: Sur les unités de certains corps de nombres de degré 8 sur $\mathbb Q$.Ann. Sci. Math. Qué. 29 (2005), 111-129 French. Zbl 1188.11056, MR 2309703
Reference: [3] Azizi, A., Benhamza, I.: Sur la capitulation des 2-classes d'idéaux de $\mathbb Q(\sqrt d, \sqrt{-2})$.Ann. Sci. Math. Qué. 29 (2005), 1-20 French. Zbl 1217.11097, MR 2296826
Reference: [4] Azizi, A., Chems-Eddin, M. M., Zekhnini, A.: On the rank of the 2-class group of some imaginary triquadratic number fields.Available at https://arxiv.org/abs/1905.01225 (2019), 21 pages.
Reference: [5] Azizi, A., Mouhib, A.: Capitulation des 2-classes d'idéaux de $\mathbb Q(\sqrt{2}, \sqrt{d})$ où $d$ est un entier naturel sans facteurs carrés.Acta Arith. 109 (2003), 27-63 French. Zbl 1077.11078, MR 1980850, 10.4064/aa109-1-2
Reference: [6] Azizi, A., Talbi, M.: Capitulation des 2-classes d'idéaux de certains corps biquadratiques cycliques.Acta Arith. 127 (2007), 231-248 French. Zbl 1169.11049, MR 2310345, 10.4064/aa127-3-3
Reference: [7] Azizi, A., Taous, M.: Capitulation des 2-classes d'idéaux de $k=\mathbb Q(\sqrt{2p},i)$.Acta Arith. 131 (2008), 103-123 French. Zbl 1139.11048, MR 2388046, 10.4064/aa131-2-1
Reference: [8] Conner, P. E., Hurrelbrink, J.: Class Number Parity.Series in Pure Mathematics 8. World Scientific, Singapore (1988). Zbl 0743.11061, MR 0963648, 10.1142/0663
Reference: [9] Gorenstein, D.: Finite Groups.Harper's Series in Modern Mathematics. Harper and Row, New York (1968). Zbl 0185.05701, MR 0231903
Reference: [10] Gras, G.: Sur les $\ell$-classes d'idéaux dans les extensions cycliques rélatives de degré premier $\ell$. I.Ann. Inst. Fourier 23 (1973), 1-48 French. Zbl 0276.12013, MR 0360519, 10.5802/aif.471
Reference: [11] Heider, F.-P., Schmithals, B.: Zur Kapitulation der Idealklassen in unverzweigten primzyklischen Erweiterungen.J. Reine Angew. Math. 336 (1982), 1-25 German. Zbl 0505.12016, MR 0671319, 10.1515/crll.1982.336.1
Reference: [12] Ishida, M.: The Genus Fields of Algebraic Number Fields.Lecture Notes in Mathematics 555. Springer, Berlin (1976). Zbl 0353.12001, MR 0435028, 10.1007/BFb0100829
Reference: [13] Kaplan, P.: Divisibilité par 8 du nombre des classes des corps quadratiques dont le 2-groupe des classes est cyclique, et réciprocité biquadratique.J. Math. Soc. Japan 25 (1973), 596-608 French. Zbl 0276.12006, MR 0323757, 10.2969/jmsj/02540596
Reference: [14] Kaplan, P.: Sur le 2-groupe des classes d'idéaux des corps quadratiques.J. Reine. Angew. Math. 283-284 (1976), 313-363 French. Zbl 0337.12003, MR 0404206, 10.1515/crll.1976.283-284.313
Reference: [15] Kisilevsky, H.: Number fields with class number congruent to $4 \pmod 8$ and Hilbert's Theorem 94.J. Number Theory 8 (1976), 271-279. Zbl 0334.12019, MR 0417128, 10.1016/0022-314X(76)90004-4
Reference: [16] Kučera, R.: On the parity of the class number of a biquadratic field.J. Number Theory 52 (1995), 43-52. Zbl 0852.11065, MR 1331764, 10.1006/jnth.1995.1054
Reference: [17] Lemmermeyer, F.: Kuroda's class number formula.Acta Arith. 66 (1994), 245-260. Zbl 0807.11052, MR 1276992, 10.4064/aa-66-3-245-260
Reference: [18] McCall, T. M., Parry, C. J., Ranalli, R. R.: Imaginary bicyclic biquadratic fields with cyclic 2-class group.J. Number Theory 53 (1995), 88-99. Zbl 0831.11059, MR 1344833, 10.1006/jnth.1995.1079
Reference: [19] Taussky, O.: A remark concerning Hilbert's Theorem 94.J. Reine Angew. Math. 239-240 (1969), 435-438. Zbl 0186.09002, MR 0279070, 10.1515/crll.1969.239-240.435
Reference: [20] Wada, H.: On the class number and the unit group of certain algebraic number fields.J. Fac. Sci., Univ. Tokyo, Sect. I 13 (1966), 201-209 \99999MR99999 0214565 \goodbreak. Zbl 0158.30103, MR 0214565
.

Files

Files Size Format View
CzechMathJ_71-2021-1_13.pdf 326.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo