Title:
|
On the Hilbert $2$-class field tower of some imaginary biquadratic number fields (English) |
Author:
|
Chems-Eddin, Mohamed Mahmoud |
Author:
|
Azizi, Abdelmalek |
Author:
|
Zekhnini, Abdelkader |
Author:
|
Jerrari, Idriss |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
71 |
Issue:
|
1 |
Year:
|
2021 |
Pages:
|
269-281 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $\Bbbk =\mathbb {Q} \bigl (\sqrt 2, \sqrt d \bigr )$ be an imaginary bicyclic biquadratic number field, where $d$ is an odd negative square-free integer and $\Bbbk _2^{(2)}$ its second Hilbert $2$-class field. Denote by $G={\rm Gal}(\Bbbk _2^{(2)}/\Bbbk )$ the Galois group of $\Bbbk _2^{(2)}/\Bbbk $. The purpose of this note is to investigate the Hilbert $2$-class field tower of $\Bbbk $ and then deduce the structure of $G$. (English) |
Keyword:
|
$2$-class group |
Keyword:
|
imaginary biquadratic number field |
Keyword:
|
capitulation |
Keyword:
|
Hilbert $2$-class field |
MSC:
|
11R11 |
MSC:
|
11R27 |
MSC:
|
11R29 |
MSC:
|
11R37 |
idZBL:
|
07332716 |
idMR:
|
MR4226481 |
DOI:
|
10.21136/CMJ.2020.0333-19 |
. |
Date available:
|
2021-03-12T16:15:11Z |
Last updated:
|
2023-04-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/148739 |
. |
Reference:
|
[1] Azizi, A.: Unités de certains corps de nombres imaginaires et abéliens sur $\mathbb Q$.Ann. Sci. Math. Qué. 23 (1999), 15-21 French. Zbl 1041.11072, MR 1721726 |
Reference:
|
[2] Azizi, A.: Sur les unités de certains corps de nombres de degré 8 sur $\mathbb Q$.Ann. Sci. Math. Qué. 29 (2005), 111-129 French. Zbl 1188.11056, MR 2309703 |
Reference:
|
[3] Azizi, A., Benhamza, I.: Sur la capitulation des 2-classes d'idéaux de $\mathbb Q(\sqrt d, \sqrt{-2})$.Ann. Sci. Math. Qué. 29 (2005), 1-20 French. Zbl 1217.11097, MR 2296826 |
Reference:
|
[4] Azizi, A., Chems-Eddin, M. M., Zekhnini, A.: On the rank of the 2-class group of some imaginary triquadratic number fields.Available at https://arxiv.org/abs/1905.01225 (2019), 21 pages. |
Reference:
|
[5] Azizi, A., Mouhib, A.: Capitulation des 2-classes d'idéaux de $\mathbb Q(\sqrt{2}, \sqrt{d})$ où $d$ est un entier naturel sans facteurs carrés.Acta Arith. 109 (2003), 27-63 French. Zbl 1077.11078, MR 1980850, 10.4064/aa109-1-2 |
Reference:
|
[6] Azizi, A., Talbi, M.: Capitulation des 2-classes d'idéaux de certains corps biquadratiques cycliques.Acta Arith. 127 (2007), 231-248 French. Zbl 1169.11049, MR 2310345, 10.4064/aa127-3-3 |
Reference:
|
[7] Azizi, A., Taous, M.: Capitulation des 2-classes d'idéaux de $k=\mathbb Q(\sqrt{2p},i)$.Acta Arith. 131 (2008), 103-123 French. Zbl 1139.11048, MR 2388046, 10.4064/aa131-2-1 |
Reference:
|
[8] Conner, P. E., Hurrelbrink, J.: Class Number Parity.Series in Pure Mathematics 8. World Scientific, Singapore (1988). Zbl 0743.11061, MR 0963648, 10.1142/0663 |
Reference:
|
[9] Gorenstein, D.: Finite Groups.Harper's Series in Modern Mathematics. Harper and Row, New York (1968). Zbl 0185.05701, MR 0231903 |
Reference:
|
[10] Gras, G.: Sur les $\ell$-classes d'idéaux dans les extensions cycliques rélatives de degré premier $\ell$. I.Ann. Inst. Fourier 23 (1973), 1-48 French. Zbl 0276.12013, MR 0360519, 10.5802/aif.471 |
Reference:
|
[11] Heider, F.-P., Schmithals, B.: Zur Kapitulation der Idealklassen in unverzweigten primzyklischen Erweiterungen.J. Reine Angew. Math. 336 (1982), 1-25 German. Zbl 0505.12016, MR 0671319, 10.1515/crll.1982.336.1 |
Reference:
|
[12] Ishida, M.: The Genus Fields of Algebraic Number Fields.Lecture Notes in Mathematics 555. Springer, Berlin (1976). Zbl 0353.12001, MR 0435028, 10.1007/BFb0100829 |
Reference:
|
[13] Kaplan, P.: Divisibilité par 8 du nombre des classes des corps quadratiques dont le 2-groupe des classes est cyclique, et réciprocité biquadratique.J. Math. Soc. Japan 25 (1973), 596-608 French. Zbl 0276.12006, MR 0323757, 10.2969/jmsj/02540596 |
Reference:
|
[14] Kaplan, P.: Sur le 2-groupe des classes d'idéaux des corps quadratiques.J. Reine. Angew. Math. 283-284 (1976), 313-363 French. Zbl 0337.12003, MR 0404206, 10.1515/crll.1976.283-284.313 |
Reference:
|
[15] Kisilevsky, H.: Number fields with class number congruent to $4 \pmod 8$ and Hilbert's Theorem 94.J. Number Theory 8 (1976), 271-279. Zbl 0334.12019, MR 0417128, 10.1016/0022-314X(76)90004-4 |
Reference:
|
[16] Kučera, R.: On the parity of the class number of a biquadratic field.J. Number Theory 52 (1995), 43-52. Zbl 0852.11065, MR 1331764, 10.1006/jnth.1995.1054 |
Reference:
|
[17] Lemmermeyer, F.: Kuroda's class number formula.Acta Arith. 66 (1994), 245-260. Zbl 0807.11052, MR 1276992, 10.4064/aa-66-3-245-260 |
Reference:
|
[18] McCall, T. M., Parry, C. J., Ranalli, R. R.: Imaginary bicyclic biquadratic fields with cyclic 2-class group.J. Number Theory 53 (1995), 88-99. Zbl 0831.11059, MR 1344833, 10.1006/jnth.1995.1079 |
Reference:
|
[19] Taussky, O.: A remark concerning Hilbert's Theorem 94.J. Reine Angew. Math. 239-240 (1969), 435-438. Zbl 0186.09002, MR 0279070, 10.1515/crll.1969.239-240.435 |
Reference:
|
[20] Wada, H.: On the class number and the unit group of certain algebraic number fields.J. Fac. Sci., Univ. Tokyo, Sect. I 13 (1966), 201-209 \99999MR99999 0214565 \goodbreak. Zbl 0158.30103, MR 0214565 |
. |