Title:
|
Distributive lattices have the intersection property (English) |
Author:
|
Mühle, Henri |
Language:
|
English |
Journal:
|
Mathematica Bohemica |
ISSN:
|
0862-7959 (print) |
ISSN:
|
2464-7136 (online) |
Volume:
|
146 |
Issue:
|
1 |
Year:
|
2021 |
Pages:
|
7-17 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Distributive lattices form an important, well-behaved class of lattices. They are instances of two larger classes of lattices: congruence-uniform and semidistributive lattices. Congruence-uniform lattices allow for a remarkable second order of their elements: the core label order; semidistributive lattices naturally possess an associated flag simplicial complex: the canonical join complex. In this article we present a characterization of finite distributive lattices in terms of the core label order and the canonical join complex, and we show that the core label order of a finite distributive lattice is always a meet-semilattice. (English) |
Keyword:
|
distributive lattice |
Keyword:
|
congruence-uniform lattice |
Keyword:
|
canonical join complex |
Keyword:
|
core label order |
Keyword:
|
intersection property |
MSC:
|
06D05 |
idZBL:
|
07332739 |
idMR:
|
MR4227308 |
DOI:
|
10.21136/MB.2019.0156-18 |
. |
Date available:
|
2021-03-12T16:17:36Z |
Last updated:
|
2021-04-19 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/148744 |
. |
Reference:
|
[1] Bancroft, E.: The shard intersection order on permutations.Available at https://arxiv.org/abs/1103.1910 (2011). |
Reference:
|
[2] Barnard, E.: The canonical join complex.Electron. J. Comb. 26 (2019), Research paper P1.24, 25 pages. Zbl 07032096, MR 3919619 |
Reference:
|
[3] Birkhoff, G.: Applications of lattice algebra.Proc. Camb. Philos. Soc. 30 (1934), 115-122. Zbl 0009.05501, 10.1017/S0305004100016522 |
Reference:
|
[4] Birkhoff, G.: Rings of sets.Duke Math. J. 3 (1937), 443-454. Zbl 0017.19403, MR 1546000, 10.1215/S0012-7094-37-00334-X |
Reference:
|
[5] Clifton, A., Dillery, P., Garver, A.: The canonical join complex for biclosed sets.Algebra Univers. 79 (2018), Article No. 84, 29 pages. Zbl 06983724, MR 3877464, 10.1007/s00012-018-0567-z |
Reference:
|
[6] Davey, B. A., Poguntke, W., Rival, I.: A characterization of semi-distributivity.Algebra Univers. 5 (1975), 72-75. Zbl 0313.06002, MR 0382103, 10.1007/BF02485233 |
Reference:
|
[7] Day, A.: Characterizations of finite lattices that are bounded-homomorphic images of sublattices of free lattices.Can. J. Math. 31 (1979), 69-78. Zbl 0432.06007, MR 0518707, 10.4153/CJM-1979-008-x |
Reference:
|
[8] Day, A.: Congruence normality: The characterization of the doubling class of convex sets.Algebra Univers. 31 (1994), 397-406. Zbl 0804.06006, MR 1265350, 10.1007/BF01221793 |
Reference:
|
[9] Erné, M., Heitzig, J., Reinhold, J.: On the number of distributive lattices.Electron. J. Comb. 9 (2002), Research paper R24, 23 pages. Zbl 0989.05005, MR 1912806 |
Reference:
|
[10] Freese, R., Ježek, J., Nation, J. B.: Free Lattices.Mathematical Surveys and Monographs 42. AMS, Providence (1995). Zbl 0839.06005, MR 1319815, 10.1090/surv/042 |
Reference:
|
[11] Garver, A., McConville, T.: Enumerative properties of Grid-Associahedra.Available at https://arxiv.org/abs/1705.04901 (2017). MR 3678643 |
Reference:
|
[12] Garver, A., McConville, T.: Oriented flip graphs of polygonal subdivisions and noncrossing tree partitions.J. Comb. Theory, Ser. A 158 (2018), 126-175. Zbl 06905022, MR 3800125, 10.1016/j.jcta.2018.03.014 |
Reference:
|
[13] Grätzer, G.: General Lattice Theory.Pure and Applied Mathematics 75. Academic Press, Harcourt Brace Jovanovich Publishers, New York-London (1978). Zbl 0436.06001, MR 0509213, 10.1007/978-3-0348-7633-9 |
Reference:
|
[14] Mühle, H.: Noncrossing partitions, Tamari lattices, and parabolic quotients of the symmetric group.Available at https://arxiv.org/abs/1809.01405 (2018). MR 4039340 |
Reference:
|
[15] Mühle, H.: The core label order of a congruence-uniform lattice.Algebra Univers. 80 (2019), Article No. 10, 22 pages. Zbl 07031055, MR 3908324, 10.1007/s00012-019-0585-5 |
Reference:
|
[16] Petersen, T. K.: On the shard intersection order of a Coxeter group.SIAM J. Discrete Math. 27 (2013), 1880-1912. Zbl 1296.05211, MR 3123822, 10.1137/110847202 |
Reference:
|
[17] Reading, N.: Noncrossing partitions and the shard intersection order.J. Algebr. Comb. 33 (2011), 483-530. Zbl 1290.05163, MR 2781960, 10.1007/s10801-010-0255-3 |
Reference:
|
[18] Reading, N.: Noncrossing arc diagrams and canonical join representations.SIAM J. Discrete Math. 29 (2015), 736-750. Zbl 1314.05015, MR 3335492, 10.1137/140972391 |
Reference:
|
[19] Reading, N.: Lattice theory of the poset of regions.Lattice Theory: Special Topics and Applications. Volume 2 Birkhäuser/Springer, Basel (2016), 399-487 G. Grätzer et al. Zbl 1404.06004, MR 3645055, 10.1007/978-3-319-44236-5_9 |
Reference:
|
[20] Whitman, P. M.: Free lattices.Ann. Math. (2) 42 (1941), 325-330. Zbl 0024.24501, MR 0003614, 10.2307/1969001 |
Reference:
|
[21] Whitman, P. M.: Free lattices. II.Ann. Math. (2) 43 (1942), 104-115. Zbl 0063.08232, MR 0006143, 10.2307/1968883 |
. |