Previous |  Up |  Next

Article

Title: A formula for the number of solutions of a restricted linear congruence (English)
Author: Namboothiri, K. Vishnu
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 146
Issue: 1
Year: 2021
Pages: 47-54
Summary lang: English
.
Category: math
.
Summary: Consider the linear congruence equation $x_1+\ldots +x_k \equiv b\pmod {n^s}$ for $b\in \mathbb Z$, $n,s\in \mathbb N$. Let $(a,b)_s$ denote the generalized gcd of $a$ and $b$ which is the largest $l^s$ with $l\in \mathbb N$ dividing $a$ and $b$ simultaneously. Let $d_1,\ldots , d_{\tau (n)}$ be all positive divisors of $n$. For each $d_j\mid n$, define $\mathcal {C}_{j,s}(n) = \{1\leq x\leq n^s\colon (x,n^s)_s = d^s_j\}$. K. Bibak et al. (2016) gave a formula using Ramanujan sums for the number of solutions of the above congruence equation with some gcd restrictions on $x_i$. We generalize their result with generalized gcd restrictions on $x_i$ and prove that for the above linear congruence, the number of solutions is $$ \frac {1}{n^s}\sum \limits _{d\mid n}c_{d,s}(b)\prod \limits _{j=1}^{\tau (n)}\Bigl (c_{{n}/{d_j},s}\Bigl (\frac {n^s}{d^s}\Big )\Big )^{g_j} $$ where $g_j = |\{x_1,\ldots , x_k\}\cap \mathcal {C}_{j,s}(n)|$ for $j=1,\ldots , \tau (n)$ and $c_{d,s}$ denotes the generalized Ramanujan sum defined by E. Cohen (1955). (English)
Keyword: restricted linear congruence
Keyword: generalized gcd
Keyword: generalized Ramanujan sum
Keyword: finite Fourier transform
MSC: 11A25
MSC: 11D79
MSC: 11L03
MSC: 11P83
MSC: 42A16
idZBL: 07332741
idMR: MR4227310
DOI: 10.21136/MB.2020.0171-18
.
Date available: 2021-03-12T16:18:58Z
Last updated: 2021-04-19
Stable URL: http://hdl.handle.net/10338.dmlcz/148746
.
Reference: [1] Apostol, T. M.: Introduction to Analytic Number Theory.Undergraduate Texts in Mathematics. Springer, New York (1976). Zbl 0335.10001, MR 0434929, 10.1007/978-1-4757-5579-4
Reference: [2] Bibak, K., Kapron, B. M., Srinivasan, V.: On a restricted linear congruence.Int. J. Number Theory 12 (2016), 2167-2171. Zbl 1353.11066, MR 3562020, 10.1142/S179304211650130X
Reference: [3] Bibak, K., Kapron, B. M., Srinivasan, V., Tauraso, R., Tóth, L.: Restricted linear congruences.J. Number Theory 171 (2017), 128-144. Zbl 1353.11067, MR 3556678, 10.1016/j.jnt.2016.07.018
Reference: [4] Bibak, K., Kapron, B. M., Srinivasan, V., Tóth, L.: On an almost-universal hash function family with applications to authentication and secrecy codes.Int. J. Found. Comput. Sci. (2018), 357-375. Zbl 1391.94730, MR 3799234, 10.1142/S0129054118500089
Reference: [5] Cohen, E.: An extension of Ramanujan's sum.Duke Math. J. 16 (1949), 85-90. Zbl 0034.02104, MR 0027781, 10.1215/S0012-7094-49-01607-5
Reference: [6] Cohen, E.: An extension of Ramanujan's sum. II. Additive properties.Duke Math. J. 22 (1955), 543-550. Zbl 0067.02205, MR 0072163, 10.1215/S0012-7094-55-02260-2
Reference: [7] Cohen, E.: A class of arithmetical functions.Proc. Natl. Acad. Sci. USA 41 (1955), 939-944. Zbl 0066.29203, MR 0075230, 10.1073/pnas.41.11.939
Reference: [8] Dixon, J. D.: A finite analogue of the Goldbach problem.Can. Math. Bull. 3 (1960), 121-126. Zbl 0093.25902, MR 0123519, 10.4153/CMB-1960-013-5
Reference: [9] Lehmer, D. N.: Certain theorems in the theory of quadratic residues.Am. Math. Monthly 20 (1913), 151-157 \99999JFM99999 44.0248.09. MR 1517830, 10.2307/2972413
Reference: [10] Liskovets, V. A.: A multivariate arithmetic function of combinatorial and topological significance.Integers 10 (2010), 155-177. Zbl 1230.11007, MR 2601316, 10.1515/INTEG.2010.012
Reference: [11] McCarthy, P. J.: The generation of arithmetical identities.J. Reine Angew. Math. 203 (1960), 55-63. Zbl 0101.28002, MR 0111712, 10.1515/crll.1960.203.55
Reference: [12] Montgomery, H. L., Vaughan, R. C.: Multiplicative Number Theory I: Classical Theory.Cambridge Studies in Advanced Mathematics 97. Cambridge University Press, Cambridge (2007). Zbl 1142.11001, MR 2378655, 10.1017/cbo9780511618314
Reference: [13] Namboothiri, K. V.: On the number of solutions of a restricted linear congruence.J. Number Theory 188 (2018), 324-334. Zbl 06855850, MR 3778637, 10.1016/j.jnt.2018.01.013
Reference: [14] Nicol, C. A., Vandiver, H. S.: A Von Sterneck arithmetical function and restricted partitions with respect to a modulus.Proc. Natl. Acad. Sci. USA 40 (1954), 825-835. Zbl 0056.04001, MR 0063399, 10.1073/pnas.40.9.825
Reference: [15] Rademacher, H.: Aufgabe 30.Jahresber. Dtsch. Math.-Ver. 34 (1925), page 158 German.
Reference: [16] Rademacher, H.: Aufgabe 30. Lösung von A. Brauer.Jahresber. Dtsch. Math.-Ver. 35 (1926), 92-94 German \99999JFM99999 52.0139.03.
Reference: [17] Sander, J. W., Sander, T.: Adding generators in cyclic groups.J. Number Theory 133 (2013), 705-718. Zbl 1353.11018, MR 2994382, 10.1016/j.jnt.2012.08.021
Reference: [18] Tóth, L.: Counting solutions of quadratic congruences in several variables revisited.J. Integer Seq. 17 (2014), Article 14.11.6, 23 pages. Zbl 1321.11041, MR 3291084
.

Files

Files Size Format View
MathBohem_146-2021-1_4.pdf 275.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo