Previous |  Up |  Next

Article

Title: Repdigits in the base $b$ as sums of four balancing numbers (English)
Author: Keskin, Refik
Author: Erduvan, Fatih
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 146
Issue: 1
Year: 2021
Pages: 55-68
Summary lang: English
.
Category: math
.
Summary: The sequence of balancing numbers $(B_{n})$ is defined by the recurrence relation $B_{n}=6B_{n-1}-B_{n-2}$ for $n\geq 2$ with initial conditions $B_{0}=0$ and $B_{1}=1.$ $B_{n}$ is called the $n$th balancing number. In this paper, we find all repdigits in the base $b,$ which are sums of four balancing numbers. As a result of our theorem, we state that if $B_{n}$ is repdigit in the base $b$ and has at least two digits, then $(n,b)=(2,5),(3,6) $. Namely, $B_{2}=6=(11)_{5}$ and $B_{3}=35=(55)_{6}.$ (English)
Keyword: balancing number
Keyword: repdigit
Keyword: Diophantine equations
Keyword: linear form in logarithms
MSC: 11B39
MSC: 11D61
MSC: 11J86
idZBL: 07332742
idMR: MR4227311
DOI: 10.21136/MB.2020.0077-19
.
Date available: 2021-03-12T16:19:39Z
Last updated: 2021-04-19
Stable URL: http://hdl.handle.net/10338.dmlcz/148747
.
Reference: [1] Weger, B. M. M. de: Algorithms for Diophantine Equations.CWI Tract 65. Stichting Mathematisch Centrum, Centrum voor Wiskunde en Informatica, Amsterdam (1989). Zbl 0687.10013, MR 1026936
Reference: [2] Alvarado, S. Díaz, Luca, F.: Fibonacci numbers which are sums of two repdigits.Proc. 14th Int. Conf. Fibonacci Numbers and their Applications. Morelia, 2010 Aportaciones Mat. Investig. 20. Soc. Mat. Mexicana, México (2011), 97-108 F. Luca et al. Zbl 1287.11021, MR 3243271
Reference: [3] Faye, B., Luca, F.: Pell and Pell-Lucas numbers with only one distinct digit.Ann. Math. Inform. 45 (2015), 55-60. Zbl 1349.11023, MR 3438812
Reference: [4] Luca, F.: Fibonacci and Lucas numbers with only one distinct digit.Port. Math. 57 (2000), 243-254. Zbl 0958.11007, MR 1759818
Reference: [5] Luca, F.: Repdigits as sums of three Fibonacci numbers.Math. Commun. 17 (2012), 1-11. Zbl 1305.11008, MR 2946127
Reference: [6] Luca, F., Normenyo, B. V., Togbe, A.: Repdigits as sums of four Pell numbers.Bol. Soc. Mat. Mex., III. Ser. 25 (2019), 249-266. Zbl 07089380, MR 3964309, 10.1007/s40590-018-0202-1
Reference: [7] Keskin, R., Karaatlı, O.: Some new properties of balancing numbers and square triangular numbers.J. Integer Seq. 15 (2012), Article 12.1.4, 13 pages. Zbl 1291.11030, MR 2872461
Reference: [8] Matveev, E. M.: An explicit lower bound for a homogeneous rational linear form in logarithms of algebraic numbers. II.Izv. Math. 64 (2000), 1217-1269 translation from Izv. Ross. Akad. Nauk, Ser. Mat. 64 2000 125-180. Zbl 1013.11043, MR 1817252, 10.1070/IM2000v064n06ABEH000314
Reference: [9] Normenyo, B. V., Luca, F., Togbé, A.: Repdigits as sums of three Pell numbers.Period. Math. Hung. 77 (2018), 318-328. Zbl 07011043, MR 3866634, 10.1007/s10998-018-0247-y
Reference: [10] Panda, G. K.: Some fascinating properties of balancing numbers.Cong. Numerantium 194 (2009), 185-189. Zbl 1262.11019, MR 2463534
Reference: [11] Panda, G. K., Ray, P. K.: Cobalancing numbers and cobalancers.Int. J. Math. Math. Sci. 2005 (2005), 1189-1200. Zbl 1085.11017, MR 2176762, 10.1155/IJMMS.2005.1189
.

Files

Files Size Format View
MathBohem_146-2021-1_5.pdf 289.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo