Title:
|
Repdigits in the base $b$ as sums of four balancing numbers (English) |
Author:
|
Keskin, Refik |
Author:
|
Erduvan, Fatih |
Language:
|
English |
Journal:
|
Mathematica Bohemica |
ISSN:
|
0862-7959 (print) |
ISSN:
|
2464-7136 (online) |
Volume:
|
146 |
Issue:
|
1 |
Year:
|
2021 |
Pages:
|
55-68 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
The sequence of balancing numbers $(B_{n})$ is defined by the recurrence relation $B_{n}=6B_{n-1}-B_{n-2}$ for $n\geq 2$ with initial conditions $B_{0}=0$ and $B_{1}=1.$ $B_{n}$ is called the $n$th balancing number. In this paper, we find all repdigits in the base $b,$ which are sums of four balancing numbers. As a result of our theorem, we state that if $B_{n}$ is repdigit in the base $b$ and has at least two digits, then $(n,b)=(2,5),(3,6) $. Namely, $B_{2}=6=(11)_{5}$ and $B_{3}=35=(55)_{6}.$ (English) |
Keyword:
|
balancing number |
Keyword:
|
repdigit |
Keyword:
|
Diophantine equations |
Keyword:
|
linear form in logarithms |
MSC:
|
11B39 |
MSC:
|
11D61 |
MSC:
|
11J86 |
idZBL:
|
07332742 |
idMR:
|
MR4227311 |
DOI:
|
10.21136/MB.2020.0077-19 |
. |
Date available:
|
2021-03-12T16:19:39Z |
Last updated:
|
2021-04-19 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/148747 |
. |
Reference:
|
[1] Weger, B. M. M. de: Algorithms for Diophantine Equations.CWI Tract 65. Stichting Mathematisch Centrum, Centrum voor Wiskunde en Informatica, Amsterdam (1989). Zbl 0687.10013, MR 1026936 |
Reference:
|
[2] Alvarado, S. Díaz, Luca, F.: Fibonacci numbers which are sums of two repdigits.Proc. 14th Int. Conf. Fibonacci Numbers and their Applications. Morelia, 2010 Aportaciones Mat. Investig. 20. Soc. Mat. Mexicana, México (2011), 97-108 F. Luca et al. Zbl 1287.11021, MR 3243271 |
Reference:
|
[3] Faye, B., Luca, F.: Pell and Pell-Lucas numbers with only one distinct digit.Ann. Math. Inform. 45 (2015), 55-60. Zbl 1349.11023, MR 3438812 |
Reference:
|
[4] Luca, F.: Fibonacci and Lucas numbers with only one distinct digit.Port. Math. 57 (2000), 243-254. Zbl 0958.11007, MR 1759818 |
Reference:
|
[5] Luca, F.: Repdigits as sums of three Fibonacci numbers.Math. Commun. 17 (2012), 1-11. Zbl 1305.11008, MR 2946127 |
Reference:
|
[6] Luca, F., Normenyo, B. V., Togbe, A.: Repdigits as sums of four Pell numbers.Bol. Soc. Mat. Mex., III. Ser. 25 (2019), 249-266. Zbl 07089380, MR 3964309, 10.1007/s40590-018-0202-1 |
Reference:
|
[7] Keskin, R., Karaatlı, O.: Some new properties of balancing numbers and square triangular numbers.J. Integer Seq. 15 (2012), Article 12.1.4, 13 pages. Zbl 1291.11030, MR 2872461 |
Reference:
|
[8] Matveev, E. M.: An explicit lower bound for a homogeneous rational linear form in logarithms of algebraic numbers. II.Izv. Math. 64 (2000), 1217-1269 translation from Izv. Ross. Akad. Nauk, Ser. Mat. 64 2000 125-180. Zbl 1013.11043, MR 1817252, 10.1070/IM2000v064n06ABEH000314 |
Reference:
|
[9] Normenyo, B. V., Luca, F., Togbé, A.: Repdigits as sums of three Pell numbers.Period. Math. Hung. 77 (2018), 318-328. Zbl 07011043, MR 3866634, 10.1007/s10998-018-0247-y |
Reference:
|
[10] Panda, G. K.: Some fascinating properties of balancing numbers.Cong. Numerantium 194 (2009), 185-189. Zbl 1262.11019, MR 2463534 |
Reference:
|
[11] Panda, G. K., Ray, P. K.: Cobalancing numbers and cobalancers.Int. J. Math. Math. Sci. 2005 (2005), 1189-1200. Zbl 1085.11017, MR 2176762, 10.1155/IJMMS.2005.1189 |
. |