[1] Beddington, J. R.: 
Mutual interference between parasites or predators and its effect on searching efficiency. J. Animal Ecology 44 (1975), 331-340. 
DOI 10.2307/3866[2] DeAngelis, D. L., Goldstein, R. A., O'Neill, R. V.: 
A model for trophic interaction. Ecology 56 (1975), 881-892. 
DOI 10.2307/1936298[3] Diekmann, O., Gils, S. A. van, Lunel, S. M. Verduyn, Walther, H.-O.: 
Delay Equations: Functional-, Complex-, and Nonlinear Analysis. Applied Mathematical Sciences 110. Springer, New York (1995). 
DOI 10.1007/978-1-4612-4206-2 | 
MR 1345150 | 
Zbl 0826.34002[8] Hartung, F., Krisztin, T., Walther, H.-O., Wu, J.: 
Functional differential equations with state-dependent delays: Theory and applications. Handbook of Differential Equations: Ordinary Differential Equations. Vol. 3 Elsevier, North Holland, Amsterdam (2006), 435-545 A. Cañada et al. 
DOI 10.1016/S1874-5725(06)80009-X | 
MR 2457636[13] Lyapunov, A. M.: 
The General Problem of the Stability of Motion. Charkov Mathematical Society, Charkov (1892), Russian \99999JFM99999 24.0876.02. 
MR 1229075[17] Perelson, A., Neumann, A., Markowitz, M., Leonard, J., Ho, D.: 
HIV-1 dynamics in vivo: Virion clearance rate, infected cell life-span, and viral generation time. Science 271 (1996), 1582-1586. 
DOI 10.1126/science.271.5255.1582[18] Rezounenko, A. V.: 
Differential equations with discrete state-dependent delay: Uniqueness and well-posedness in the space of continuous functions. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 70 (2009), 3978-3986. 
DOI 10.1016/j.na.2008.08.006 | 
MR 2515314 | 
Zbl 1163.35494[19] Rezounenko, A. V.: 
Non-linear partial differential equations with discrete state-dependent delays in a metric space. Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 73 (2010), 1707-1714. 
DOI 10.1016/j.na.2010.05.005 | 
MR 2661353 | 
Zbl 1194.35488[21] Rezounenko, A. V.: 
Local properties of solutions to non-autonomous parabolic PDEs with state-dependent delays. J. Abstr. Differ. Equ. Appl. 2 (2012), 56-71. 
MR 3010014 | 
Zbl 1330.35493[22] Rezounenko, A. V.: 
Continuous solutions to a viral infection model with general incidence rate, discrete state-dependent delay, CTL and antibody immune responses. Electron. J. Qual. Theory Differ. Equ. 2016 (2016), 1-15. 
DOI 10.14232/ejqtde.2016.1.79 | 
MR 3547455 | 
Zbl 1389.93130[24] Rezounenko, A. V.: 
Viral infection model with diffusion and state-dependent delay: a case of logistic growth. Proc. Equadiff 2017 Conf., Bratislava, 2017 Slovak University of Technology, Spektrum STU Publishing (2017), 53-60 K. Mikula et al. 
MR 3639177[25] Smith, H. L.: 
Monotone Dynamical Systems. An Introduction to the Theory of Competitive and Cooperative Systems. Mathematical Surveys and Monographs 41. AMS, Providence (1995). 
DOI 10.1090/surv/041 | 
MR 1319817 | 
Zbl 0821.34003[28] Wang, J., Pang, J., Kuniya, T., Enatsu, Y.: 
\kern-.27ptGlobal threshold dynamics in a five-dimensional virus model with cell-mediated, humoral immune responses and distributed delays. Appl. Math. Comput. 241 (2014), 298-316. 
DOI 10.1016/j.amc.2014.05.015 | 
MR 3223430. | 
Zbl 1334.92431[29] Wodarz, D.: 
Hepatitis C virus dynamics and pathology: the role of CTL and antibody responses. J. General Virology 84 (2003), 1743-1750. 
DOI 10.1099/vir.0.19118-0[34] Zhao, Y., Xu, Z.: 
Global dynamics for a delayed hepatitis C virus infection model. Electron. J. Differ. Equ. 2014 (2014), 1-18. 
MR 3239375 | 
Zbl 1304.34141