Previous |  Up |  Next

Article

Title: Viral in-host infection model with two state-dependent delays: stability of continuous solutions (English)
Author: Fedoryshyna, Kateryna
Author: Rezounenko, Alexander
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 146
Issue: 1
Year: 2021
Pages: 91-114
Summary lang: English
.
Category: math
.
Summary: A virus dynamics model with two state-dependent delays and logistic growth term is investigated. A general class of nonlinear incidence rates is considered. The model describes the in-host interplay between viral infection and CTL (cytotoxic T lymphocytes) and antibody immune responses. The wellposedness of the model proposed and Lyapunov stability properties of interior infection equilibria which describe the cases of a chronic disease are studied. We choose a space of merely continuous initial functions which is appropriate for therapy, including drug administration. (English)
Keyword: evolution equation
Keyword: state-dependent delay
Keyword: Lyapunov stability
Keyword: virus infection model
MSC: 34K20
MSC: 93C23
MSC: 97M60
idZBL: 07332744
idMR: MR4227313
DOI: 10.21136/MB.2020.0028-19
.
Date available: 2021-03-12T16:21:00Z
Last updated: 2021-04-19
Stable URL: http://hdl.handle.net/10338.dmlcz/148749
.
Reference: [1] Beddington, J. R.: Mutual interference between parasites or predators and its effect on searching efficiency.J. Animal Ecology 44 (1975), 331-340. 10.2307/3866
Reference: [2] DeAngelis, D. L., Goldstein, R. A., O'Neill, R. V.: A model for trophic interaction.Ecology 56 (1975), 881-892. 10.2307/1936298
Reference: [3] Diekmann, O., Gils, S. A. van, Lunel, S. M. Verduyn, Walther, H.-O.: Delay Equations: Functional-, Complex-, and Nonlinear Analysis.Applied Mathematical Sciences 110. Springer, New York (1995). Zbl 0826.34002, MR 1345150, 10.1007/978-1-4612-4206-2
Reference: [4] Driver, R. D.: A two-body problem of classical electrodynamics: the one-dimensional case.Ann. Phys. 21 (1963), 122-142. Zbl 0108.40705, MR 0151110, 10.1016/0003-4916(63)90227-6
Reference: [5] : Global Hepatitis Report 2017.World Health Organization, Geneva (2017). Available at http://apps.who.int/iris/bitstream/10665/255016/1/9789241565455-eng.pdf.
Reference: [6] Gourley, S. A., Kuang, Y., Nagy, J. D.: Dynamics of a delay differential equation model of hepatitis B virus infection.J. Biol. Dyn. 2 (2008), 140-153. Zbl 1140.92014, MR 2428891, 10.1080/17513750701769873
Reference: [7] Hale, J. K.: Theory of Functional Differential Equations.Applied Mathematical Sciences 3. Springer, Berlin (1977). Zbl 0352.34001, MR 0508721, 10.1007/978-1-4612-9892-2
Reference: [8] Hartung, F., Krisztin, T., Walther, H.-O., Wu, J.: Functional differential equations with state-dependent delays: Theory and applications.Handbook of Differential Equations: Ordinary Differential Equations. Vol. 3 Elsevier, North Holland, Amsterdam (2006), 435-545 A. Cañada et al. MR 2457636, 10.1016/S1874-5725(06)80009-X
Reference: [9] Huang, G., Ma, W., Takeuchi, Y.: Global properties for virus dynamics model with \hbox{Beddington}-DeAngelis functional response.Appl. Math. Lett. 22 (2009), 1690-1693. Zbl 1178.37125, MR 2569065, 10.1016/j.aml.2009.06.004
Reference: [10] Huang, G., Ma, W., Takeuchi, Y.: Global analysis for delay virus dynamics model with Beddington-DeAngelis functional response.Appl. Math. Lett. 24 (2011), 1199-1203. Zbl 1217.34128, MR 2784182, 10.1016/j.aml.2011.02.007
Reference: [11] Korobeinikov, A.: Global properties of infectious disease models with nonlinear incidence.Bull. Math. Biol. 69 (2007), 1871-1886. Zbl 1298.92101, MR 2329184, 10.1007/s11538-007-9196-y
Reference: [12] Kuang, Y.: Delay Differential Equations with Applications in Population Dynamics.Mathematics in Science and Engineering 191. Academic Press, Boston (1993). Zbl 0777.34002, MR 1218880, 10.1016/s0076-5392(08)x6164-8
Reference: [13] Lyapunov, A. M.: The General Problem of the Stability of Motion.Charkov Mathematical Society, Charkov (1892), Russian \99999JFM99999 24.0876.02. MR 1229075
Reference: [14] McCluskey, C. C.: Using Lyapunov functions to construct Lyapunov functionals for delay differential equations.SIAM J. Appl. Dyn. Syst. 14 (2015), 1-24. Zbl 1325.34081, MR 3296596, 10.1137/140971683
Reference: [15] Nowak, M., Bangham, C.: Population dynamics of immune response to persistent viruses.Science 272 (1996), 74-79. 10.1126/science.272.5258.74
Reference: [16] Perelson, A. S., Nelson, P.: Mathematical analysis of HIV dynamics in vivo.SIAM Rev. 41 (1999), 3-44. Zbl 1078.92502, MR 1669741, 10.1137/S0036144598335107
Reference: [17] Perelson, A., Neumann, A., Markowitz, M., Leonard, J., Ho, D.: HIV-1 dynamics in vivo: Virion clearance rate, infected cell life-span, and viral generation time.Science 271 (1996), 1582-1586. 10.1126/science.271.5255.1582
Reference: [18] Rezounenko, A. V.: Differential equations with discrete state-dependent delay: Uniqueness and well-posedness in the space of continuous functions.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 70 (2009), 3978-3986. Zbl 1163.35494, MR 2515314, 10.1016/j.na.2008.08.006
Reference: [19] Rezounenko, A. V.: Non-linear partial differential equations with discrete state-dependent delays in a metric space.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 73 (2010), 1707-1714. Zbl 1194.35488, MR 2661353, 10.1016/j.na.2010.05.005
Reference: [20] Rezounenko, A. V.: A condition on delay for differential equations with discrete state-dependent delay.J. Math. Anal. Appl. 385 (2012), 506-516. Zbl 1242.34136, MR 2834276., 10.1016/j.jmaa.2011.06.070
Reference: [21] Rezounenko, A. V.: Local properties of solutions to non-autonomous parabolic PDEs with state-dependent delays.J. Abstr. Differ. Equ. Appl. 2 (2012), 56-71. Zbl 1330.35493, MR 3010014
Reference: [22] Rezounenko, A. V.: Continuous solutions to a viral infection model with general incidence rate, discrete state-dependent delay, CTL and antibody immune responses.Electron. J. Qual. Theory Differ. Equ. 2016 (2016), 1-15. Zbl 1389.93130, MR 3547455, 10.14232/ejqtde.2016.1.79
Reference: [23] Rezounenko, A. V.: Stability of a viral infection model with state-dependent delay, CTL and antibody immune responses.Discrete Contin. Dyn. Syst., Ser. B 22 (2017), 1547-1563. Zbl 1359.93209, MR 3639177, 10.3934/dcdsb.2017074
Reference: [24] Rezounenko, A. V.: Viral infection model with diffusion and state-dependent delay: a case of logistic growth.Proc. Equadiff 2017 Conf., Bratislava, 2017 Slovak University of Technology, Spektrum STU Publishing (2017), 53-60 K. Mikula et al. MR 3639177
Reference: [25] Smith, H. L.: Monotone Dynamical Systems. An Introduction to the Theory of Competitive and Cooperative Systems.Mathematical Surveys and Monographs 41. AMS, Providence (1995). Zbl 0821.34003, MR 1319817, 10.1090/surv/041
Reference: [26] Walther, H.-O.: The solution manifold and $C\sp 1$-smoothness for differential equations with state-dependent delay.J. Diff. Equations 195 (2003), 46-65. Zbl 1045.34048, MR 2019242, 10.1016/j.jde.2003.07.001
Reference: [27] Wang, X., Liu, S.: A class of delayed viral models with saturation infection rate and immune response.Math. Methods Appl. Sci. 36 (2013), 125-142. Zbl 1317.34171, MR 3008329, 10.1002/mma.2576
Reference: [28] Wang, J., Pang, J., Kuniya, T., Enatsu, Y.: \kern-.27ptGlobal threshold dynamics in a five-dimensional virus model with cell-mediated, humoral immune responses and distributed delays.Appl. Math. Comput. 241 (2014), 298-316. Zbl 1334.92431, MR 3223430., 10.1016/j.amc.2014.05.015
Reference: [29] Wodarz, D.: Hepatitis C virus dynamics and pathology: the role of CTL and antibody responses.J. General Virology 84 (2003), 1743-1750. 10.1099/vir.0.19118-0
Reference: [30] Wodarz, D.: Killer Cell Dynamics. Mathematical and Computational Approaches to Immunology.Interdisciplinary Applied Mathematics 32. Springer, New York (2007). Zbl 1125.92032, MR 2273003, 10.1007/978-0-387-68733-9
Reference: [31] Xu, S.: Global stability of the virus dynamics model with Crowley-Martin functional response.Electron. J. Qual. Theory Differ. Equ. 2012 (2012), Paper No. 9, 10 pages. Zbl 1340.34174, MR 2878794, 10.14232/ejqtde.2012.1.9
Reference: [32] Yan, Y., Wang, W.: Global stability of a five-dimesional model with immune responses and delay.Discrete Contin. Dyn. Syst., Ser. B 17 (2012), 401-416. Zbl 1233.92061, MR 2843287, 10.3934/dcdsb.2012.17.401
Reference: [33] Yousfi, N., Hattaf, K., Tridane, A.: Modeling the adaptive immune response in HBV infection.J. Math. Biol. 63 (2011), 933-957. Zbl 1234.92040, MR 2844670, 10.1007/s00285-010-0397-x
Reference: [34] Zhao, Y., Xu, Z.: Global dynamics for a delayed hepatitis C virus infection model.Electron. J. Differ. Equ. 2014 (2014), 1-18. Zbl 1304.34141, MR 3239375
Reference: [35] Zhu, H., Zou, X.: Dynamics of a HIV-1 infection model with cell-mediated immune response and intracellular delay.Discrete Contin. Dyn. Syst., Ser. B 12 (2009), 511-524. Zbl 1169.92033, MR 2525152, 10.3934/dcdsb.2009.12.511
.

Files

Files Size Format View
MathBohem_146-2021-1_7.pdf 381.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo