Previous |  Up |  Next

Article

Title: Chebyshev polynomials and Pell equations over finite fields (English)
Author: Cohen, Boaz
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 71
Issue: 2
Year: 2021
Pages: 491-510
Summary lang: English
.
Category: math
.
Summary: We shall describe how to construct a fundamental solution for the Pell equation $x^2-my^2=1$ over finite fields of characteristic $p\neq 2$. Especially, a complete description of the structure of these fundamental solutions will be given using Chebyshev polynomials. Furthermore, we shall describe the structure of the solutions of the general Pell equation $x^2-my^2=n$. (English)
Keyword: finite field
Keyword: Chebyshev polynomial
Keyword: Pell equation
MSC: 11D09
MSC: 11D79
MSC: 11T99
MSC: 12E10
MSC: 12E20
idZBL: 07361081
idMR: MR4263182
DOI: 10.21136/CMJ.2020.0451-19
.
Date available: 2021-05-20T13:45:09Z
Last updated: 2023-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/148917
.
Reference: [1] Benjamin, A. T., Walton, D.: Counting on Chebyshev polynomials.Math. Mag. 82 (2009), 117-126. Zbl 1223.33013, MR 2512595, 10.1080/0025570X.2009.11953605
Reference: [2] Ireland, K., Rosen, M.: A Classical Introduction to Modern Number Theory.Graduate Texts in Mathematics 84. Springer, New York (1990). Zbl 0712.11001, MR 1070716, 10.1007/978-1-4757-2103-4
Reference: [3] LeVeque, W. J.: Topics in Number Theory. Vol I.Dover Publications, Mineola (2002). Zbl 1009.11001, MR 1942365
.

Files

Files Size Format View
CzechMathJ_71-2021-2_12.pdf 274.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo