Title:
|
Trudinger's inequality for double phase functionals with variable exponents (English) |
Author:
|
Maeda, Fumi-Yuki |
Author:
|
Mizuta, Yoshihiro |
Author:
|
Ohno, Takao |
Author:
|
Shimomura, Tetsu |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
71 |
Issue:
|
2 |
Year:
|
2021 |
Pages:
|
511-528 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Our aim in this paper is to establish Trudinger's inequality on Musielak-Orlicz-Morrey spaces $L^{\Phi ,\kappa }(G)$ under conditions on $\Phi $ which are essentially weaker than those considered in a former paper. As an application and example, we show Trudinger's inequality for double phase functionals $\Phi (x,t) = t^{p(x)} + a(x) t^{q(x)}$, where $p(\cdot )$ and $q(\cdot )$ satisfy log-Hölder conditions and $a(\cdot )$ is nonnegative, bounded and Hölder continuous. (English) |
Keyword:
|
Riesz potential |
Keyword:
|
Trudinger's inequality |
Keyword:
|
Musielak-Orlicz-Morrey space |
Keyword:
|
double phase functional |
MSC:
|
31C15 |
MSC:
|
46E30 |
idZBL:
|
07361082 |
idMR:
|
MR4263183 |
DOI:
|
10.21136/CMJ.2021.0506-19 |
. |
Date available:
|
2021-05-20T13:45:38Z |
Last updated:
|
2023-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/148918 |
. |
Reference:
|
[1] Adams, D. R., Hedberg, L. I.: Function Spaces and Potential Theory.Grundlehren der Mathematischen Wissenschaften 314. Springer, Berlin (1996). Zbl 0834.46021, MR 1411441, 10.1007/978-3-662-03282-4 |
Reference:
|
[2] Ahmida, Y., Chlebicka, I., Gwiazda, P., Youssfi, A.: Gossez's approximation theorems in Musielak-Orlicz-Sobolev spaces.J. Funct. Anal. 275 (2018), 2538-2571. Zbl 1405.42042, MR 3847479, 10.1016/j.jfa.2018.05.015 |
Reference:
|
[3] Baroni, P., Colombo, M., Mingione, G.: Non-autonomous functionals, borderline cases and related function classes.St. Petersbg. Math. J. 27 (2016), 347-379. Zbl 1335.49057, MR 3570955, 10.1090/spmj/1392 |
Reference:
|
[4] Baroni, P., Colombo, M., Mingione, G.: Regularity for general functionals with double phase.Calc. Var. Partial Differ. Equ. 57 (2018), Article ID 62, 48 pages. Zbl 1394.49034, MR 3775180, 10.1007/s00526-018-1332-z |
Reference:
|
[5] Colombo, M., Mingione, G.: Bounded minimisers of double phase variational integrals.Arch. Ration. Mech. Anal. 218 (2015), 219-273. Zbl 1325.49042, MR 3360738, 10.1007/s00205-015-0859-9 |
Reference:
|
[6] Colombo, M., Mingione, G.: Regularity for double phase variational problems.Arch. Ration. Mech. Anal. 215 (2015), 443-496. Zbl 1322.49065, MR 3294408, 10.1007/s00205-014-0785-2 |
Reference:
|
[7] Futamura, T., Mizuta, Y.: Continuity properties of Riesz potentials for functions in $L^{p(\cdot)}$ of variable exponent.Math. Inequal. Appl. 8 (2005), 619-631. Zbl 1087.31004, MR 2174890, 10.7153/mia-08-58 |
Reference:
|
[8] Futamura, T., Mizuta, Y., Shimomura, T.: Sobolev embedding for variable exponent Riesz potentials on metric spaces.Ann. Acad. Sci. Fenn., Math. 31 (2006), 495-522. Zbl 1100.31002, MR 2248828 |
Reference:
|
[9] Futamura, T., Mizuta, Y., Shimomura, T.: Integrability of maximal functions and Riesz potentials in Orlicz spaces of variable exponent.J. Math. Anal. Appl. 366 (2010), 391-417. Zbl 1193.46016, MR 2600488, 10.1016/j.jmaa.2010.01.053 |
Reference:
|
[10] Hästö, P.: The maximal operator on generalized Orlicz spaces.J. Funct. Anal. 269 (2015), 4038-4048 corrigendum ibid. 271 240-243 2016. Zbl 1338.47032, MR 3418078, 10.1016/j.jfa.2015.10.002 |
Reference:
|
[11] Maeda, F.-Y., Mizuta, Y., Ohno, T., Shimomura, T.: Boundedness of maximal operators and Sobolev's inequality on Musielak-Orlicz-Morrey spaces.Bull. Sci. Math. 137 (2013), 76-96. Zbl 1267.46045, MR 3007101, 10.1016/j.bulsci.2012.03.008 |
Reference:
|
[12] Maeda, F.-Y., Mizuta, Y., Ohno, T., Shimomura, T.: Trudinger's inequality and continuity of potentials on Musielak-Orlicz-Morrey spaces.Potential Anal. 38 (2013), 515-535. Zbl 1268.46024, MR 3015362, 10.1007/s11118-012-9284-y |
Reference:
|
[13] Maeda, F.-Y., Mizuta, Y., Ohno, T., Shimomura, T.: Sobolev's inequality for double phase functionals with variable exponents.Forum Math. 31 (2019), 517-527. Zbl 1423.46049, MR 3918454, 10.1515/forum-2018-0077 |
Reference:
|
[14] Mizuta, Y., Nakai, E., Ohno, T., Shimomura, T.: Riesz potentials and Sobolev embeddings on Morrey spaces of variable exponents.Complex Var. Elliptic Equ. 56 (2011), 671-695. Zbl 1228.31004, MR 2832209, 10.1080/17476933.2010.504837 |
Reference:
|
[15] Mizuta, Y., Ohno, T., Shimomura, T.: Sobolev embeddings for Riesz potential spaces of variable exponents near 1 and Sobolev's exponent.Bull. Sci. Math. 134 (2010), 12-36. Zbl 1192.46027, MR 2579870, 10.1016/j.bulsci.2009.09.004 |
Reference:
|
[16] Mizuta, Y., Shimomura, T.: Differentiability and Hölder continuity of Riesz potentials of Orlicz functions.Analysis, München 20 (2000), 201-223. Zbl 0955.31002, MR 1778254, 10.1524/anly.2000.20.3.201 |
Reference:
|
[17] Mizuta, Y., Shimomura, T.: Sobolev embeddings for Riesz potentials of functions in Morrey spaces of variable exponent.J. Math. Soc. Japan 60 (2008), 583-602. Zbl 1161.46305, MR 2421989, 10.2969/jmsj/06020583 |
Reference:
|
[18] Musielak, J.: Orlicz Spaces and Modular Spaces.Lecture Notes in Mathematics 1034. Springer, Berlin (1983). Zbl 0557.46020, MR 0724434, 10.1007/BFb0072210 |
Reference:
|
[19] Nakai, E.: Generalized fractional integrals on Orlicz-Morrey spaces.Banach and Function Spaces Yokohama Publishers, Yokohama (2004), 323-333. Zbl 1118.42005, MR 2146936 |
Reference:
|
[20] Ohno, T., Shimomura, T.: Trudinger's inequality for Riesz potentials of functions in Musielak-Orlicz spaces.Bull. Sci. Math. 138 (2014), 225-235. Zbl 1305.46022, MR 3175020, 10.1016/j.bulsci.2013.05.007 |
. |