Previous |  Up |  Next

Article

Title: Trudinger's inequality for double phase functionals with variable exponents (English)
Author: Maeda, Fumi-Yuki
Author: Mizuta, Yoshihiro
Author: Ohno, Takao
Author: Shimomura, Tetsu
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 71
Issue: 2
Year: 2021
Pages: 511-528
Summary lang: English
.
Category: math
.
Summary: Our aim in this paper is to establish Trudinger's inequality on Musielak-Orlicz-Morrey spaces $L^{\Phi ,\kappa }(G)$ under conditions on $\Phi $ which are essentially weaker than those considered in a former paper. As an application and example, we show Trudinger's inequality for double phase functionals $\Phi (x,t) = t^{p(x)} + a(x) t^{q(x)}$, where $p(\cdot )$ and $q(\cdot )$ satisfy log-Hölder conditions and $a(\cdot )$ is nonnegative, bounded and Hölder continuous. (English)
Keyword: Riesz potential
Keyword: Trudinger's inequality
Keyword: Musielak-Orlicz-Morrey space
Keyword: double phase functional
MSC: 31C15
MSC: 46E30
idZBL: 07361082
idMR: MR4263183
DOI: 10.21136/CMJ.2021.0506-19
.
Date available: 2021-05-20T13:45:38Z
Last updated: 2023-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/148918
.
Reference: [1] Adams, D. R., Hedberg, L. I.: Function Spaces and Potential Theory.Grundlehren der Mathematischen Wissenschaften 314. Springer, Berlin (1996). Zbl 0834.46021, MR 1411441, 10.1007/978-3-662-03282-4
Reference: [2] Ahmida, Y., Chlebicka, I., Gwiazda, P., Youssfi, A.: Gossez's approximation theorems in Musielak-Orlicz-Sobolev spaces.J. Funct. Anal. 275 (2018), 2538-2571. Zbl 1405.42042, MR 3847479, 10.1016/j.jfa.2018.05.015
Reference: [3] Baroni, P., Colombo, M., Mingione, G.: Non-autonomous functionals, borderline cases and related function classes.St. Petersbg. Math. J. 27 (2016), 347-379. Zbl 1335.49057, MR 3570955, 10.1090/spmj/1392
Reference: [4] Baroni, P., Colombo, M., Mingione, G.: Regularity for general functionals with double phase.Calc. Var. Partial Differ. Equ. 57 (2018), Article ID 62, 48 pages. Zbl 1394.49034, MR 3775180, 10.1007/s00526-018-1332-z
Reference: [5] Colombo, M., Mingione, G.: Bounded minimisers of double phase variational integrals.Arch. Ration. Mech. Anal. 218 (2015), 219-273. Zbl 1325.49042, MR 3360738, 10.1007/s00205-015-0859-9
Reference: [6] Colombo, M., Mingione, G.: Regularity for double phase variational problems.Arch. Ration. Mech. Anal. 215 (2015), 443-496. Zbl 1322.49065, MR 3294408, 10.1007/s00205-014-0785-2
Reference: [7] Futamura, T., Mizuta, Y.: Continuity properties of Riesz potentials for functions in $L^{p(\cdot)}$ of variable exponent.Math. Inequal. Appl. 8 (2005), 619-631. Zbl 1087.31004, MR 2174890, 10.7153/mia-08-58
Reference: [8] Futamura, T., Mizuta, Y., Shimomura, T.: Sobolev embedding for variable exponent Riesz potentials on metric spaces.Ann. Acad. Sci. Fenn., Math. 31 (2006), 495-522. Zbl 1100.31002, MR 2248828
Reference: [9] Futamura, T., Mizuta, Y., Shimomura, T.: Integrability of maximal functions and Riesz potentials in Orlicz spaces of variable exponent.J. Math. Anal. Appl. 366 (2010), 391-417. Zbl 1193.46016, MR 2600488, 10.1016/j.jmaa.2010.01.053
Reference: [10] Hästö, P.: The maximal operator on generalized Orlicz spaces.J. Funct. Anal. 269 (2015), 4038-4048 corrigendum ibid. 271 240-243 2016. Zbl 1338.47032, MR 3418078, 10.1016/j.jfa.2015.10.002
Reference: [11] Maeda, F.-Y., Mizuta, Y., Ohno, T., Shimomura, T.: Boundedness of maximal operators and Sobolev's inequality on Musielak-Orlicz-Morrey spaces.Bull. Sci. Math. 137 (2013), 76-96. Zbl 1267.46045, MR 3007101, 10.1016/j.bulsci.2012.03.008
Reference: [12] Maeda, F.-Y., Mizuta, Y., Ohno, T., Shimomura, T.: Trudinger's inequality and continuity of potentials on Musielak-Orlicz-Morrey spaces.Potential Anal. 38 (2013), 515-535. Zbl 1268.46024, MR 3015362, 10.1007/s11118-012-9284-y
Reference: [13] Maeda, F.-Y., Mizuta, Y., Ohno, T., Shimomura, T.: Sobolev's inequality for double phase functionals with variable exponents.Forum Math. 31 (2019), 517-527. Zbl 1423.46049, MR 3918454, 10.1515/forum-2018-0077
Reference: [14] Mizuta, Y., Nakai, E., Ohno, T., Shimomura, T.: Riesz potentials and Sobolev embeddings on Morrey spaces of variable exponents.Complex Var. Elliptic Equ. 56 (2011), 671-695. Zbl 1228.31004, MR 2832209, 10.1080/17476933.2010.504837
Reference: [15] Mizuta, Y., Ohno, T., Shimomura, T.: Sobolev embeddings for Riesz potential spaces of variable exponents near 1 and Sobolev's exponent.Bull. Sci. Math. 134 (2010), 12-36. Zbl 1192.46027, MR 2579870, 10.1016/j.bulsci.2009.09.004
Reference: [16] Mizuta, Y., Shimomura, T.: Differentiability and Hölder continuity of Riesz potentials of Orlicz functions.Analysis, München 20 (2000), 201-223. Zbl 0955.31002, MR 1778254, 10.1524/anly.2000.20.3.201
Reference: [17] Mizuta, Y., Shimomura, T.: Sobolev embeddings for Riesz potentials of functions in Morrey spaces of variable exponent.J. Math. Soc. Japan 60 (2008), 583-602. Zbl 1161.46305, MR 2421989, 10.2969/jmsj/06020583
Reference: [18] Musielak, J.: Orlicz Spaces and Modular Spaces.Lecture Notes in Mathematics 1034. Springer, Berlin (1983). Zbl 0557.46020, MR 0724434, 10.1007/BFb0072210
Reference: [19] Nakai, E.: Generalized fractional integrals on Orlicz-Morrey spaces.Banach and Function Spaces Yokohama Publishers, Yokohama (2004), 323-333. Zbl 1118.42005, MR 2146936
Reference: [20] Ohno, T., Shimomura, T.: Trudinger's inequality for Riesz potentials of functions in Musielak-Orlicz spaces.Bull. Sci. Math. 138 (2014), 225-235. Zbl 1305.46022, MR 3175020, 10.1016/j.bulsci.2013.05.007
.

Files

Files Size Format View
CzechMathJ_71-2021-2_13.pdf 276.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo