Title:
|
Sidon basis in polynomial rings over finite fields (English) |
Author:
|
Kuo, Wentang |
Author:
|
Yamagishi, Shuntaro |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
71 |
Issue:
|
2 |
Year:
|
2021 |
Pages:
|
555-562 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $\mathbb {F}_q[t]$ denote the polynomial ring over $\mathbb {F}_q$, the finite field of $q$ elements. Suppose the characteristic of $\mathbb {F}_q$ is not $2$ or $3$. We prove that there exist infinitely many $N \in \mathbb {N}$ such that the set $\{ f \in \mathbb {F}_q[t] \colon \deg f < N \}$ contains a Sidon set which is an additive basis of order $3$. (English) |
Keyword:
|
Sidon set |
Keyword:
|
additive basis |
Keyword:
|
polynomial rings over finite fields |
MSC:
|
11B83 |
MSC:
|
11K31 |
MSC:
|
11T55 |
idZBL:
|
07361085 |
idMR:
|
MR4263186 |
DOI:
|
10.21136/CMJ.2020.0543-19 |
. |
Date available:
|
2021-05-20T13:47:33Z |
Last updated:
|
2023-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/148921 |
. |
Reference:
|
[1] Cilleruelo, J.: Combinatorial problems in finite fields and Sidon sets.Combinatorica 32 (2012), 497-511. Zbl 1291.11025, MR 3004806, 10.1007/s00493-012-2819-4 |
Reference:
|
[2] Cilleruelo, J.: On Sidon sets and asymptotic bases.Proc. Lond. Math. Soc. (3) 111 (2015), 1206-1230. Zbl 1390.11026, MR 3477233, 10.1112/plms/pdv050 |
Reference:
|
[3] Deshouillers, J.-M., Plagne, A.: A Sidon basis.Acta Math. Hung. 123 (2009), 233-238. Zbl 1200.11008, MR 2500912, 10.1007/s10474-008-8097-3 |
Reference:
|
[4] Erdős, P., Sárközy, A., Sós, V. T.: On additive properties of general sequences.Discrete Math. 136 (1994), 75-99. Zbl 0818.11009, MR 1313282, 10.1016/0012-365X(94)00108-U |
Reference:
|
[5] Erdős, P., Sárközy, A., Sós, V. T.: On sum sets of Sidon sets I.J. Number Theory 47 (1994), 329-347. Zbl 0811.11014, MR 1278402, 10.1006/jnth.1994.1040 |
Reference:
|
[6] Erdős, P., Turán, P.: On a problem of Sidon in additive number theory, and on some related problems.J. Lond. Math. Soc. 16 (1941), 212-215. Zbl 0061.07301, MR 0006197, 10.1112/jlms/s1-16.4.212 |
Reference:
|
[7] Kiss, S. Z.: On Sidon sets which are asymptotic basis.Acta Math. Hung. 128 (2010), 46-58. Zbl 1218.11012, MR 2665798, 10.1007/s10474-010-9155-1 |
Reference:
|
[8] Kiss, S. Z., Rozgonyi, E., Sándor, C.: On Sidon sets which are asymptotic bases of order 4.Funct. Approximatio, Comment. Math. 51 (2014), 393-413. Zbl 1353.11016, MR 3282635, 10.7169/facm/2014.51.2.10 |
Reference:
|
[9] Konyagin, S. V., Lev, V. F.: The Erdős-Turán problem in infinite groups.Additive Number Theory Springer, New York (2010), 195-202. Zbl 1271.11011, MR 2744757, 10.1007/978-0-387-68361-4_14 |
Reference:
|
[10] Lang, S., Weil, A.: Number of points of varieties in finite fields.Am. J. Math. 76 (1954), 819-827. Zbl 0058.27202, MR 0065218, 10.2307/2372655 |
Reference:
|
[11] O'Bryant, K.: A complete annotated bibliography of work related to Sidon sequences.Electron. J. Comb. DS11 (2004), 39 pages. Zbl 1142.11312 |
. |