Previous |  Up |  Next

Article

Title: On the Waring-Goldbach problem for one square and five cubes in short intervals (English)
Author: Xue, Fei
Author: Zhang, Min
Author: Li, Jinjiang
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 71
Issue: 2
Year: 2021
Pages: 563-589
Summary lang: English
.
Category: math
.
Summary: Let $N$ be a sufficiently large integer. We prove that almost all sufficiently large even integers $n\in [N-6U,N+6U]$ can be represented as $$ n=p_1^2+p_2^3+p_3^3+p_4^3+p_5^3+p_6^3, \Bigl | p_1^2-\dfrac {N}{6}\Bigr | \leq U, \quad \Bigl | p_i^3-\dfrac {N}{6}\Bigr |\leq U, \quad i=2,3,4,5,6, $$ where $U=N^{1-\delta +\varepsilon }$ with $\delta \leq 8/225$. (English)
Keyword: Waring-Goldbach problem
Keyword: Hardy-Littlewood method
Keyword: exponential sum
Keyword: short interval
MSC: 11P05
MSC: 11P32
MSC: 11P55
idZBL: 07361086
idMR: MR4263187
DOI: 10.21136/CMJ.2020.0013-20
.
Date available: 2021-05-20T13:48:04Z
Last updated: 2023-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/148922
.
Reference: [1] Cai, Y.: The Waring-Goldbach problem: One square and five cubes.Ramanujan J. 34 (2014), 57-72. Zbl 1304.11121, MR 3210255, 10.1007/s11139-013-9486-y
Reference: [2] Hua, L. K.: Additive Theory of Prime Numbers.Translations of Mathematical Monographs 13. American Mathematical Society, Providence (1965). Zbl 0192.39304, MR 0194404, 10.1090/mmono/013
Reference: [3] Kumchev, A. V.: On Weyl sums over primes in short intervals.Number Theory: Arithmetic in Shangri-La Series on Number Theory and Its Applications 8. World Scientific, Hackensack (2013), 116-131. Zbl 1368.11095, MR 3089013, 10.1142/9789814452458_0007
Reference: [4] Li, J., Zhang, M.: On the Waring-Goldbach problem for one square and five cubes.Int. J. Number Theory 14 (2018), 2425-2440. Zbl 06940656, MR 3855467, 10.1142/S1793042118501476
Reference: [5] Liu, J.: On Lagrange's theorem with prime variables.Q. J. Math. 54 (2003), 453-462. Zbl 1080.11071, MR 2031178, 10.1093/qmath/hag028
Reference: [6] Pan, C., Pan, C.: Goldbach Conjecture.Science Press, Beijing (1992). Zbl 0849.11080, MR 1287852
Reference: [7] Sinnadurai, J. S.-C. L.: Representation of integers as sums of six cubes and one square.Q. J. Math., Oxf. II. Ser. 16 (1965), 289-296. Zbl 0144.28101, MR 0186650, 10.1093/qmath/16.4.289
Reference: [8] Stanley, G. K.: The representation of a number as the sum of one square and a number of $k$-th powers.Proc. Lond. Math. Soc. (2) 31 (1930), 512-553 \99999JFM99999 56.0174.01. MR 1577483, 10.1112/plms/s2-31.1.512
Reference: [9] Stanley, G. K.: The representation of a number as a sum of squares and cubes.J. London Math. Soc. 6 (1931), 194-197. Zbl 0002.18203, MR 1574741, 10.1112/jlms/s1-6.3.194
Reference: [10] Titchmarsh, E. C.: The Theory of the Riemann Zeta-Function.Oxford University Press, New York (1986). Zbl 0601.10026, MR 0882550
Reference: [11] Vaughan, R. C.: On Waring's problem for smaller exponents.Proc. Lond. Math. Soc., III. Ser. 52 (1986), 445-463. Zbl 0601.10035, MR 0833645, 10.1112/plms/s3-52.3.445
Reference: [12] Vaughan, R. C.: On Waring's problem: One square and five cubes.Q. J. Math., Oxf. II. Ser. 37 (1986), 117-127. Zbl 0589.10047, MR 0830635, 10.1093/qmath/37.1.117
Reference: [13] Vaughan, R. C.: The Hardy-Littlewood Method.Cambridge Tracts in Mathematics 125. Cambridge University Press, Cambridge (1997). Zbl 0868.11046, MR 1435742, 10.1017/CBO9780511470929
Reference: [14] Vinogradov, I. M.: Elements of Number Theory.Dover Publications, New York (1954). Zbl 0057.28201, MR 0062138
Reference: [15] Watson, G. L.: On sums of a square and five cubes.J. Lond. Math. Soc., II. Ser. 5 (1972), 215-218. Zbl 0241.10032, MR 0314787, 10.1112/jlms/s2-5.2.215
Reference: [16] Wooley, T. D.: Slim exceptional sets in Waring's problem: One square and five cubes.Q. J. Math. 53 (2002), 111-118. Zbl 1015.11049, MR 1887673, 10.1093/qjmath/53.1.111
Reference: [17] Zhang, M., Li, J.: Waring-Goldbach problem for unlike powers with almost equal variables.Int. J. Number Theory 14 (2018), 2441-2472. Zbl 06940657, MR 3855468, 10.1142/S1793042118501488
Reference: [18] Zhao, L.: On the Waring-Goldbach problem for fourth and sixth powers.Proc. Lond. Math. Soc. (3) 108 (2014), 1593-1622. Zbl 1370.11116, MR 3218320, 10.1112/plms/pdt072
.

Files

Files Size Format View
CzechMathJ_71-2021-2_17.pdf 340.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo