Previous |  Up |  Next

Article

Title: Engel BCI-algebras: an application of left and right commutators (English)
Author: Najafi, Ardavan
Author: Borumand Saeid, Arsham
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 146
Issue: 2
Year: 2021
Pages: 133-150
Summary lang: English
.
Category: math
.
Summary: We introduce Engel elements in a BCI-algebra by using left and right normed commutators, and some properties of these elements are studied. The notion of $n$-Engel BCI-algebra as a natural generalization of commutative BCI-algebras is introduced, and we discuss Engel BCI-algebra, which is defined by left and right normed commutators. In particular, we prove that any nilpotent BCI-algebra of type $2$ is an Engel BCI-algebra, but solvable BCI-algebras are not Engel, generally. Also, it is proved that $1$-Engel BCI-algebras are exactly the commutative BCI-algebras. (English)
Keyword: (left and right) Engel element
Keyword: commutator
Keyword: Engel BCI-algebra
MSC: 03G25
MSC: 06F35
DOI: 10.21136/MB.2020.0160-18
.
Date available: 2021-05-20T13:52:37Z
Last updated: 2021-06-07
Stable URL: http://hdl.handle.net/10338.dmlcz/148928
.
Reference: [1] Abdollahi, A.: Engel graph associated with a group.J. Algebra 318 (2007), 680-691. Zbl 1136.20034, MR 2371966, 10.1016/j.jalgebra.2007.09.007
Reference: [2] Abdollahi, A.: Engel elements in groups.Groups St. Andrews 2009 in Bath. Vol. I. London Mathematical Society Lecture Note Series 387. Cambridge University Press, Cambridge (2011), 94-117 C. M. Campbell, et al. Zbl 1235.20039, MR 2858851, 10.1017/CBO9780511842467.005
Reference: [3] Dudek, W. A.: On group-like BCI-algebras.Demonstr. Math. 21 (1988), 369-376. Zbl 0655.06011, MR 0981689, 10.1515/dema-1988-0207
Reference: [4] Dudek, W. A.: Finite BCK-algebras are solvable.Commun. Korean Math. Soc. 31 (2016), 261-262. Zbl 1339.06022, MR 3498234, 10.4134/CKMS.2016.31.2.261
Reference: [5] Huang, Y.: BCI-Algebras.Science Press, Beijing (2006).
Reference: [6] Iséki, K.: An algebra related with a propositional calculus.Proc. Japan Acad. 42 (1966), 26-29. Zbl 0207.29304, MR 0202571, 10.3792/pja/1195522171
Reference: [7] Iséki, K.: On BCI-algebras.Math. Semin. Notes, Kobe Univ. 8 (1980), 125-130. Zbl 0434.03049, MR 0590171
Reference: [8] Lei, T., Xi, C.: $p$-radical in BCI-algebras.Math. Jap. 30 (1985), 511-517. Zbl 0594.03047, MR 0812002
Reference: [9] Najafi, A.: Pseudo-commutators in BCK-algebras.Pure Math. Sci. 2 (2013), 29-32. Zbl 1305.06023, 10.12988/pms.2013.13004
Reference: [10] Najafi, A., Saeid, A. Borumand: Solvable BCK-algebras.Çankaya Univ. J. Sci. Eng. 11 (2014), 19-28.
Reference: [11] Najafi, A., Saeid, A. Borumand, Eslami, E.: Commutators in BCI-algebras.J. Intell. Fuzzy Syst. 31 (2016), 357-366. Zbl 1367.06009, 10.3233/IFS-162148
Reference: [12] Najafi, A., Saeid, A. Borumand, Eslami, E.: Centralizers of BCI-algebras.(to appear) in Miskolc Math. Notes.
Reference: [13] Najafi, A., Eslami, E., Saeid, A. Borumand: A new type of nilpotent BCI-algebras.An. Ştiinţ. Univ. Al. I. Cuza Iaşi, Ser. Nouă, Mat. 64 (2018), 309-326 \99999MR99999 3896549 \filbreak. Zbl 0708.9742, MR 3896549
.

Files

Files Size Format View
MathBohem_146-2021-2_3.pdf 248.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo