Previous |  Up |  Next

Article

Title: The periodic problem for the second order integro-differential equations with distributed deviation (English)
Author: Mukhigulashvili, Sulkhan
Author: Novotná, Veronika
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 146
Issue: 2
Year: 2021
Pages: 167-183
Summary lang: English
.
Category: math
.
Summary: We study the question of the unique solvability of the periodic type problem for the second order linear integro-differential equation with distributed argument deviation $$ u''(t)=p_0(t)u(t)+\int _{0}^{\omega }p(t,s)u(\tau (t,s)) {\rm d}s+ q(t), $$ and on the basis of the obtained results by the a priori boundedness principle we prove the new results on the solvability of periodic type problem for the second order nonlinear functional differential equations, which are close to the linear integro-differential equations. The proved results are optimal in some sense. (English)
Keyword: linear integro-differential equation
Keyword: periodic problem
Keyword: distributed deviation
Keyword: solvability
MSC: 34B15
MSC: 34K06
MSC: 34K13
DOI: 10.21136/MB.2020.0061-19
.
Date available: 2021-05-20T13:53:37Z
Last updated: 2021-06-07
Stable URL: http://hdl.handle.net/10338.dmlcz/148930
.
Reference: [1] Bravyi, E.: On solvability of periodic boundary value problems for second order linear functional differential equations.Electron. J. Qual. Theory Differ. Equ. 2016 (2016), Paper No. 5, 18 pages. Zbl 1363.34211, MR 3462810, 10.14232/ejqtde.2016.1.5
Reference: [2] Bravyi, E. I.: On the best constants in the solvability conditions for the periodic boundary value problem for higher-order functional differential equations.Differ. Equ. 48 (2012), 779-786 Translation from Differ. Uravn. 48 2012 773-780. Zbl 1259.34052, MR 3180094, 10.1134/S001226611206002X
Reference: [3] Chiu, K.-S.: Periodic solutions for nonlinear integro-differential systems with piecewise constant argument.Sci. World J. 2014 (2014), Article ID 514854, 14 pages. 10.1155/2014/514854
Reference: [4] Erbe, L. H., Guo, D.: Periodic boundary value problems for second order integrodifferential equations of mixed type.Appl. Anal. 46 (1992), 249-258. Zbl 0799.45007, MR 1167708, 10.1080/00036819208840124
Reference: [5] Hardy, G. H., Littlewood, J. E., Pólya, G.: Inequalities.Cambridge Mathematical Library. Cambridge University Press, Cambridge (1988). Zbl 0634.26008, MR 0944909
Reference: [6] Hu, S., Lakshmikantham, V.: Periodic boundary value problems for second order integro-differential equations of Volterra type.Appl. Anal. 21 (1986), 199-205. Zbl 0569.45011, MR 0840312, 10.1080/00036818608839591
Reference: [7] Kiguradze, I. T.: Boundary-value problems for systems of ordinary differential equations.J. Sov. Math. 43 (1988), 2259-2339 Translated from Itogi Nauki Tekh., Ser. Sovrem. Probl. Mat., Novejshie Dostizh. 30 1987 3-103. Zbl 0782.34025, MR 0925829, 10.1007/BF01100360
Reference: [8] Kiguradze, I., Půža, B.: On boundary value problems for functional-differential equations.Mem. Differ. Equ. Math. Phys. 12 (1997), 106-113. Zbl 0909.34054, MR 1636865
Reference: [9] Mukhigulashvili, S., Partsvania, N., Půža, B.: On a periodic problem for higher-order differential equations with a deviating argument.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 74 (2011), 3232-3241. Zbl 1225.34073, MR 2793558, 10.1016/j.na.2011.02.002
Reference: [10] Nieto, J.: Periodic boundary value problem for second order integro-ordinary differential equations with general kernel and Carathéodory nonlinearities.Int. J. Math. Math. Sci. 18 (1995), 757-764. Zbl 0837.45006, MR 1347066, 10.1155/S0161171295000974
.

Files

Files Size Format View
MathBohem_146-2021-2_5.pdf 262.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo