Previous |  Up |  Next

Article

Title: On a generalization of the Pell sequence (English)
Author: Bravo, Jhon J.
Author: Herrera, Jose L.
Author: Luca, Florian
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 146
Issue: 2
Year: 2021
Pages: 199-213
Summary lang: English
.
Category: math
.
Summary: The Pell sequence $(P_n)_{n=0}^{\infty }$ is the second order linear recurrence defined by $P_n=2P_{n-1}+P_{n-2}$ with initial conditions $P_0=0$ and $P_1=1$. In this paper, we investigate a generalization of the Pell sequence called the $k$-generalized Pell sequence which is generated by a recurrence relation of a higher order. We present recurrence relations, the generalized Binet formula and different arithmetic properties for the above family of sequences. Some interesting identities involving the Fibonacci and generalized Pell numbers are also deduced. (English)
Keyword: generalized Fibonacci number
Keyword: generalized Pell number
Keyword: recurrence sequence
MSC: 11B37
MSC: 11B39
DOI: 10.21136/MB.2020.0098-19
.
Date available: 2021-05-20T13:55:02Z
Last updated: 2021-06-07
Stable URL: http://hdl.handle.net/10338.dmlcz/148932
.
Reference: [1] Bicknell, M.: A primer on the Pell sequence and related sequences.Fibonacci Q. 13 (1975), 345-349. Zbl 0319.10013, MR 0387173
Reference: [2] Bravo, J. J., Luca, F.: On a conjecture about repdigits in $k$-generalized Fibonacci sequences.Publ. Math. 82 (2013), 623-639. Zbl 1274.11035, MR 3066434, 10.5486/PMD.2013.5390
Reference: [3] Brent, R. P.: On the periods of generalized Fibonacci recurrences.Math. Comput. 63 (1994), 389-401. Zbl 0809.11083, MR 1216256, 10.2307/2153583
Reference: [4] Dresden, G. P. B., Du, Z.: A simplified Binet formula for $k$-generalized Fibonacci numbers.J. Integer Seq. 17 (2014), Article No. 14.4.7, 9 pages. Zbl 1360.11031, MR 3181762
Reference: [5] Horadam, A. F.: Applications of modified Pell numbers to representations.Ulam Q. 3 (1995), 35-53. Zbl 0874.11023, MR 1368399
Reference: [6] Kalman, D.: Generalized Fibonacci numbers by matrix methods.Fibonacci Q. 20 (1982), 73-76. Zbl 0472.10016, MR 0660765
Reference: [7] Kiliç, E.: On the usual Fibonacci and generalized order-$k$ Pell numbers.Ars Comb. 88 (2008), 33-45. Zbl 1224.11024, MR 2426404
Reference: [8] Kiliç, E.: The Binet formula, sums and representations of generalized Fibonacci $p$-numbers.Eur. J. Comb. 29 (2008), 701-711. Zbl 1138.11004, MR 2397350, 10.1016/j.ejc.2007.03.004
Reference: [9] Kiliç, E., Taşci, D.: The linear algebra of the Pell matrix.Bol. Soc. Mat. Mex., III. Ser. 11 (2005), 163-174. Zbl 1092.05004, MR 2207722
Reference: [10] Kiliç, E., Taşci, D.: The generalized Binet formula, representation and sums of the generalized order-$k$ Pell numbers.Taiwanese J. Math. 10 (2006), 1661-1670. Zbl 1123.11005, MR 2275152, 10.11650/twjm/1500404581
Reference: [11] Koshy, T.: Fibonacci and Lucas Numbers with Applications. Vol. I.Pure and Applied Mathematics. A Wiley-Interscience Series of Texts, Monographs, and Tracts. Wiley, New York (2001). Zbl 0984.11010, MR 1855020, 10.1002/9781118033067
Reference: [12] Lee, G.-Y., Lee, S.-G., Kim, J.-S., Shin, H.-K.: The Binet formula and representations of $k$-generalized Fibonacci numbers.Fibonacci Q. 39 (2001), 158-164. Zbl 0989.11008, MR 1829526
Reference: [13] Marques, D.: On $k$-generalized Fibonacci numbers with only one distinct digit.Util. Math. 98 (2015), 23-31. Zbl 1369.11014, MR 3410879
Reference: [14] E. P. Miles, Jr.: Generalized Fibonacci numbers and associated matrices.Am. Math. Mon. 67 (1960), 745-752. Zbl 0103.27203, MR 0123521, 10.2307/2308649
Reference: [15] Muskat, J. B.: Generalized Fibonacci and Lucas sequences and rootfinding methods.Math. Comput. 61 (1993), 365-372. Zbl 0781.11006, MR 1192974, 10.2307/2152961
Reference: [16] Wolfram, D. A.: Solving generalized Fibonacci recurrences.Fibonacci Q. 36 (1998), 129-145. Zbl 0911.11014, MR 1622060
Reference: [17] Wu, Z., Zhang, H.: On the reciprocal sums of higher-order sequences.Adv. Difference Equ. 2013 (2013), Paper No. 189, 8 pages \99999DOI99999 10.1186/1687-1847-2013-189 \vfil. Zbl 1390.11042, MR 3084191
.

Files

Files Size Format View
MathBohem_146-2021-2_7.pdf 232.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo