Previous |  Up |  Next

Article

Title: Construction of convergent adaptive weighted essentially non-oscillatory schemes for Hamilton-Jacobi equations on triangular meshes (English)
Author: Kim, Kwangil
Author: Hong, Unhyok
Author: Ri, Kwanhung
Author: Yu, Juhyon
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 66
Issue: 4
Year: 2021
Pages: 599-617
Summary lang: English
.
Category: math
.
Summary: We propose a method of constructing convergent high order schemes for Hamilton-Jacobi equations on triangular meshes, which is based on combining a high order scheme with a first order monotone scheme. According to this methodology, we construct adaptive schemes of weighted essentially non-oscillatory type on triangular meshes for nonconvex Hamilton-Jacobi equations in which the first order monotone approximations are occasionally applied near singular points of the solution (discontinuities of the derivative) instead of weighted essentially non-oscillatory approximations. Through detailed numerical experiments, the convergence and effectiveness of the proposed adaptive schemes are demonstrated. (English)
Keyword: Hamilton-Jacobi equation
Keyword: first order monotone scheme
Keyword: high order scheme
Keyword: weighted essentially non-oscillatory scheme
Keyword: adaptive scheme
Keyword: convergence
MSC: 35F21
MSC: 65M12
MSC: 65M50
idZBL: 07396169
idMR: MR4283305
DOI: 10.21136/AM.2021.0368-19
.
Date available: 2021-07-09T08:14:41Z
Last updated: 2023-09-04
Stable URL: http://hdl.handle.net/10338.dmlcz/148974
.
Reference: [1] Abgrall, R.: Numerical discretization of the first-order Hamilton-Jacobi equation on triangular meshes.Commun. Pure Appl. Math. 49 (1996), 1339-1373. Zbl 0870.65116, MR 1414589, 10.1002/(SICI)1097-0312(199612)49:12<1339::AID-CPA5>3.0.CO;2-B
Reference: [2] Bokanowski, O., Falcone, M., Sahu, S.: An efficient filtered scheme for some first order time-dependent Hamilton-Jacobi equations.SIAM J. Sci. Comput. 38 (2016), A171--A195. Zbl 1407.65093, MR 3449908, 10.1137/140998482
Reference: [3] Cai, X., Qiu, J., Qiu, J.: Finite volume HWENO schemes for nonconvex conservation laws.J. Sci. Comput. 75 (2018), 65-82. Zbl 1393.65021, MR 3770312, 10.1007/s10915-017-0525-5
Reference: [4] Crandall, M. G., Lions, P.-L.: Two approximations of solutions of Hamilton-Jacobi equations.Math. Comput. 43 (1984), 1-19. Zbl 0556.65076, MR 0744921, 10.1090/S0025-5718-1984-0744921-8
Reference: [5] Feng, H., Huang, C., Wang, R.: An improved mapped weighted essentially non-oscillatory scheme.Appl. Math. Comput. 232 (2014), 453-468. Zbl 1410.65306, MR 3181284, 10.1016/j.amc.2014.01.061
Reference: [6] Gottlieb, S., Shu, C.-W., Tadmor, E.: Strong stability-preserving high-order time discretization methods.SIAM Rev. 43 (2001), 89-112. Zbl 0967.65098, MR 1854647, 10.1137/S003614450036757X
Reference: [7] Huang, C.: WENO scheme with new smoothness indicator for Hamilton-Jacobi equation.Appl. Math. Comput. 290 (2016), 21-32. Zbl 1410.65313, MR 3523409, 10.1016/j.amc.2016.05.022
Reference: [8] Jiang, G.-S., Peng, D.: Weighted ENO schemes for Hamilton-Jacobi equations.SIAM J. Sci. Comput. 21 (2000), 2126-2143. Zbl 0957.35014, MR 1762034, 10.1137/S106482759732455X
Reference: [9] Kim, K., Li, Y.: Construction of convergent high order schemes for time dependent Hamilton-Jacobi equations.J. Sci. Comput. 65 (2015), 110-137. Zbl 1408.65053, MR 3394440, 10.1007/s10915-014-9955-5
Reference: [10] Levy, D., Nayak, S., Shu, C.-W., Zhang, Y.-T.: Central WENO schemes for Hamilton-Jacobi equations on triangular meshes.SIAM J. Sci. Comput. 28 (2006), 2229-2247. Zbl 1126.65075, MR 2272259, 10.1137/040612002
Reference: [11] Oberman, A. M., Salvador, T.: Filtered schemes for Hamilton-Jacobi equations: A simple construction of convergent accurate difference schemes.J. Comput. Phys. 284 (2015), 367-388. Zbl 1352.65422, MR 3303624, 10.1016/j.jcp.2014.12.039
Reference: [12] Osher, S., Shu, C.-W.: High-order essentially nonoscillatory schemes for Hamilton-Jacobi equations.SIAM J. Numer. Anal. 28 (1991), 907-922. Zbl 0736.65066, MR 1111446, 10.1137/0728049
Reference: [13] Qiu, J., Shu, C.-W.: Hermite WENO schemes for Hamilton-Jacobi equations.J. Comput. Phys. 204 (2005), 82-99. Zbl 1070.65078, MR 2121905, 10.1016/j.jcp.2004.10.003
Reference: [14] Qiu, J.-M., Shu, C.-W.: Convergence of high order finite volume weighted essentially nonoscillatory scheme and discontinuous Galerkin method for nonconvex conservation laws.SIAM J. Sci. Comput. 31 (2008), 584-607. Zbl 1186.65123, MR 2460790, 10.1137/070687487
Reference: [15] Shu, C.-W.: High order weighted essentially nonoscillatory schemes for convection dominated problems.SIAM Rev. 51 (2009), 82-126. Zbl 1160.65330, MR 2481112, 10.1137/070679065
Reference: [16] Zhang, Y.-T., Shu, C.-W.: High-order WENO schemes for Hamilton-Jacobi equations on triangular meshes.SIAM J. Sci. Comput. 24 (2003), 1005-1030. Zbl 1034.65051, MR 1950522, 10.1137/S1064827501396798
Reference: [17] Zhu, J., Qiu, J.: Hermite WENO schemes for Hamilton-Jacobi equations on unstructured meshes.J. Comput. Phys. 254 (2013), 76-92. Zbl 1349.65364, MR 3143358, 10.1016/j.jcp.2013.07.030
Reference: [18] Zhu, J., Qiu, J.: A new fifth order finite difference WENO scheme for Hamilton-Jacobi equations.Numer. Method Partial Differ. Equations 33 (2017), 1095-1113. Zbl 1371.65089, MR 3652179, 10.1002/num.22133
.

Files

Files Size Format View
AplMat_66-2021-4_6.pdf 446.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo