Previous |  Up |  Next

Article

Title: Stability of certain Engel-like distributions (English)
Author: Bhowmick, Aritra
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 71
Issue: 3
Year: 2021
Pages: 765-784
Summary lang: English
.
Category: math
.
Summary: We introduce a higher dimensional analogue of the Engel structure, motivated by the Cartan prolongation of contact manifolds. We study the stability of such structure, generalizing the Gray-type stability results for Engel manifolds. We also derive local normal forms defining such a distribution. (English)
Keyword: Engel structure
Keyword: Cartan prolongation
Keyword: global stability
Keyword: nonholonomic distribution
Keyword: normal form
MSC: 58A15
MSC: 58A17
MSC: 58A30
idZBL: 07396196
idMR: MR4295244
DOI: 10.21136/CMJ.2020.0093-20
.
Date available: 2021-08-02T08:06:00Z
Last updated: 2023-10-02
Stable URL: http://hdl.handle.net/10338.dmlcz/149055
.
Reference: [1] Adachi, J.: Global stability of distributions of higher corank of derived length one.Int. Math. Res. Not. 49 (2003), 2621-2638. Zbl 1044.58007, MR 2012520, 10.1155/S1073792803130735
Reference: [2] Adachi, J.: Global stability of special multi-flags.Isr. J. Math. 179 (2010), 29-56 \99999DOI99999 10.1007/s11856-010-0072-3 \hyphenation{Dif-fer-en-tial}. Zbl 1222.58003, MR 2735034, 10.1007/s11856-010-0072-3
Reference: [3] Bryant, R. L., Chern, S. S., Gardner, R. B., Goldschmidt, H. L., Griffiths, P. A.: Exterior Differential Systems.Mathematical Sciences Research Institute Publications 18. Springer, New York (1991). Zbl 0726.58002, MR 1083148, 10.1007/978-1-4613-9714-4
Reference: [4] Coddington, E. A., Levinson, N.: Theory of Ordinary Differential Equations.McGraw- Hill, New York (1955). Zbl 0064.33002, MR 0069338
Reference: [5] Golubev, A.: On the global stability of maximally nonholonomic two-plane fields in four dimensions.Int. Math. Res. Not. 1997 (1997), 523-529. Zbl 0893.58007, MR 1448335, 10.1155/S1073792897000342
Reference: [6] Milnor, J. W., Stasheff, J. D.: Characteristic Classes.Annals of Mathematics Studies 76. Princeton University Press, Princeton (1974). Zbl 0298.57008, MR 0440554, 10.1515/9781400881826
Reference: [7] Montgomery, R.: Generic distributions and Lie algebras of vector fields.J. Differ. Equations 103 (1993), 387-393. Zbl 0782.58008, MR 1221912, 10.1006/jdeq.1993.1056
Reference: [8] Montgomery, R.: Engel deformations and contact structures.Northern California Symplectic Geometry Seminar American Mathematical Society Translations: Series 2, Volume 196. American Mathematical Society, Providence (1999), 103-117. Zbl 0961.53043, MR 1736216, 10.1090/trans2/196/07
Reference: [9] Montgomery, R., Zhitomirskii, M.: Geometric approach to Goursat flags.Ann. Inst. Henri Poincaré, Anal. Non Linéaire 18 (2001), 459-493. Zbl 1013.58004, MR 1841129, 10.1016/S0294-1449(01)00076-2
Reference: [10] Mormul, P.: Multi-dimensional Cartan prolongation and special $k$-flags.Geometric Singularity Theory Banach Center Publications 65. Polish Academy of Sciences, Institute of Mathematics, Warsaw (2004), 157-178. Zbl 1056.58002, MR 2104345, 10.4064/bc65-0-12
.

Files

Files Size Format View
CzechMathJ_71-2021-3_10.pdf 295.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo