Previous |  Up |  Next

Article

Title: $S$-depth on $ZD$-modules and local cohomology (English)
Author: Lotfi Parsa, Morteza
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 71
Issue: 3
Year: 2021
Pages: 755-764
Summary lang: English
.
Category: math
.
Summary: Let $R$ be a Noetherian ring, and $I$ and $J$ be two ideals of $R$. Let $S$ be a Serre subcategory of the category of $R$-modules satisfying the condition $C_I$ and $M$ be a $ZD$-module. As a generalization of the $S$-${\rm depth}(I, M)$ and ${\rm depth}(I, J, M)$, the $S$-${\rm depth}$ of $(I, J)$ on $M$ is defined as $S$-${\rm depth}(I, J, M)=\inf \{S$-${\rm depth}(\frak {a}, M) \colon \frak {a}\in \widetilde {\rm W}(I,J)\}$, and some properties of this concept are investigated. The relations between $S$-${\rm depth}(I, J, M)$ and $H^{i}_{I,J}(M)$ are studied, and it is proved that $S$-${\rm depth}(I, J, M)=\inf \{i \colon H^{i}_{I,J}(M)\notin S\}$, where $S$ is a Serre subcategory closed under taking injective hulls. Some conditions are provided that local cohomology modules with respect to a pair of ideals coincide with ordinary local cohomology modules under these conditions. Let ${\rm Supp}_R H^{i}_{I,J}(M)$ be a finite subset of ${\rm Max}(R)$ for all $i<t$, where $M$ is an arbitrary $R$-module and $t$ is an integer. It is shown that there are distinct maximal ideals $\frak m_1, \frak m_2,\ldots ,\frak m_k\in {\rm W}(I, J)$ such that $H^{i}_{I,J}(M)\cong H^{i}_{\frak m_1}(M)\oplus H^{i}_{\frak m_2}(M)\oplus \cdots \oplus H^{i}_{\frak m_k}(M)$ for all $i<t$. (English)
Keyword: depth
Keyword: local cohomology
Keyword: Serre subcategory
Keyword: $ZD$-module
MSC: 13C15
MSC: 13C60
MSC: 13D45
idZBL: 07396195
idMR: MR4295243
DOI: 10.21136/CMJ.2020.0088-20
.
Date available: 2021-08-02T08:05:30Z
Last updated: 2023-10-02
Stable URL: http://hdl.handle.net/10338.dmlcz/149054
.
Reference: [1] Aghapournahr, M., Ahmadi-Amoli, K., Sadeghi, M. Y.: The concept of $(I,J)$-Cohen-Macaulay modules.J. Algebr. Syst. 3 (2015), 1-10. MR 3534204, 10.22044/JAS.2015.482
Reference: [2] Aghapournahr, M., Melkersson, L.: Local cohomology and Serre subcategories.J. Algebra 320 (2008), 1275-1287. Zbl 1153.13014, MR 2427643, 10.1016/j.jalgebra.2008.04.002
Reference: [3] Asadollahi, M., Khashyarmanesh, K., Salarian, S.: A generalization of the cofiniteness problem in local cohomology modules.J. Aust. Math. Soc. 75 (2003), 313-324. Zbl 1096.13522, MR 2015320, 10.1017/s1446788700008132
Reference: [4] Bijan-Zadeh, M. H.: Torsion theories and local cohomology over commutative Noetherian rings.J. London Math. Soc., II. Ser. 19 (1979), 402-410. Zbl 0404.13010, MR 0540052, 10.1112/jlms/s2-19.3.402
Reference: [5] Brodmann, M. P., Sharp, R. Y.: Local Cohomology: An Algebraic Introduction with Geometric Applications.Cambridge Studies in Advanced Mathematics 60. Cambridge University Press, Cambridge (1998). Zbl 0903.13006, MR 1613627, 10.1017/CBO9780511629204
Reference: [6] Bruns, W., Herzog, J.: Cohen-Macaulay Rings.Cambridge Studies in Advanced Mathematics 39. Cambridge University Press, Cambridge (1998). Zbl 0909.13005, MR 1251956, 10.1017/CBO9780511608681
Reference: [7] Chu, L., Wang, Q.: Some results on local cohomology modules defined by a pair of ideals.J. Math. Kyoto Univ. 49 (2009), 193-200. Zbl 1174.13024, MR 2531134, 10.1215/kjm/1248983036
Reference: [8] Divaani-Aazar, K., Esmkhani, M. A.: Artinianness of local cohomology modules of ZD-modules.Commun. Algebra 33 (2005), 2857-2863. Zbl 1090.13012, MR 2159511, 10.1081/agb-200063983
Reference: [9] E. G. Evans, Jr.: Zero divisors in Noetherian-like rings.Trans. Am. Math. Soc. 155 (1971), 505-512. Zbl 0216.32603, MR 0272773, 10.1090/s0002-9947-1971-0272773-9
Reference: [10] Parsa, M. Lotfi: Depth of an ideal on ZD-modules.Publ. Inst. Math., Nouv. Sér. 106(120) (2019), 29-37. MR 4040296, 10.2298/pim1920029l
Reference: [11] Parsa, M. Lotfi, Payrovi, S.: Lower bounds for local cohomology modules with respect to a pair of ideals.Algebra Colloq. 23 (2016), 329-334. Zbl 1344.13012, MR 3475055, 10.1142/s1005386716000341
Reference: [12] Payrovi, S., Parsa, M. Lotfi: Finiteness of local cohomology modules defined by a pair of ideals.Commun. Algebra 41 (2013), 627-637. Zbl 1263.13016, MR 3011786, 10.1080/00927872.2011.631206
Reference: [13] Takahashi, R., Yoshino, Y., Yoshizawa, T.: Local cohomology based on a nonclosed support defined by a pair of ideals.J. Pure Appl. Algebra 213 (2009), 582-600. Zbl 1160.13013, MR 2483839, 10.1016/j.jpaa.2008.09.008
.

Files

Files Size Format View
CzechMathJ_71-2021-3_9.pdf 230.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo