Previous |  Up |  Next

Article

Title: Ideal class (semi)groups and atomicity in Prüfer domains (English)
Author: Hasenauer, Richard Erwin
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 71
Issue: 3
Year: 2021
Pages: 891-900
Summary lang: English
.
Category: math
.
Summary: We explore the connection between atomicity in Prüfer domains and their corresponding class groups. We observe that a class group of infinite order is necessary for non-Noetherian almost Dedekind and Prüfer domains of finite character to be atomic. We construct a non-Noetherian almost Dedekind domain and exhibit a generating set for the ideal class semigroup. (English)
Keyword: Prüfer domain
Keyword: factorization
MSC: 13A50
MSC: 13F15
idZBL: 07396205
idMR: MR4295253
DOI: 10.21136/CMJ.2020.0136-20
.
Date available: 2021-08-02T08:10:35Z
Last updated: 2023-10-02
Stable URL: http://hdl.handle.net/10338.dmlcz/149064
.
Reference: [1] Coykendall, J., Hasenauer, R. E.: Factorization in Prüfer domains.Glasg. Math. J. 60 (2018), 401-409. Zbl 1393.13013, MR 3784055, 10.1017/S0017089517000179
Reference: [2] Gilmer, R.: Multiplicative Ideal Theory.Queen's Papers in Pure and Applied Mathematics 90. Queen's University, Kingston (1992). Zbl 0804.13001, MR 1204267
Reference: [3] Hasenauer, R. E.: Normsets of almost Dedekind domains and atomicity.J. Commut. Algebra 8 (2016), 61-75. Zbl 1343.13010, MR 3482346, 10.1216/JCA-2016-8-1-61
Reference: [4] Loper, A.: Sequence domains and integer-valued polynomials.J. Pure Appl. Algebra 119 (1997), 185-210. Zbl 0960.13005, MR 1453219, 10.1016/S0022-4049(96)00025-4
Reference: [5] Olberding, B.: Factorization into radical ideals.Arithmetical Properties of Commutative Rings and Monoids Lecture Notes in Pure and Applied Mathematics 241. Chapman & Hall/CRC, Boca Raton (2005), 363-377. Zbl 1091.13002, MR 2140708, 10.1201/9781420028249.ch25
.

Files

Files Size Format View
CzechMathJ_71-2021-3_19.pdf 228.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo