Previous |  Up |  Next

Article

Title: The local index density of the perturbed de Rham complex (English)
Author: Álvarez López, Jesús
Author: Gilkey, Peter B.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 71
Issue: 3
Year: 2021
Pages: 901-932
Summary lang: English
.
Category: math
.
Summary: A perturbation of the de Rham complex was introduced by Witten for an exact 1-form $\Theta $ and later extended by Novikov for a closed 1-form on a Riemannian manifold $M$. We use invariance theory to show that the perturbed index density is independent of $\Theta $; this result was established previously by J. A. Álvarez López, Y. A. Kordyukov and E. Leichtnam (2020) using other methods. We also show the higher order heat trace asymptotics of the perturbed de Rham complex exhibit nontrivial dependence on $\Theta $. We establish similar results for manifolds with boundary imposing suitable boundary conditions and give an equivariant version for the local Lefschetz trace density. In the setting of the Dolbeault complex, one requires $\Theta $ to be a $\bar \partial $ closed $1$-form to define a local index density; we show in contrast to the de Rham complex, that this exhibits a nontrivial dependence on $\Theta $ even in the setting of Riemann surfaces. (English)
Keyword: Witten deformation
Keyword: local index density
Keyword: de Rham complex
Keyword: Dolbeault complex
Keyword: equivariant index density
MSC: 58J20
idZBL: 07396206
idMR: MR4295254
DOI: 10.21136/CMJ.2021.0142-20
.
Date available: 2021-08-02T08:11:17Z
Last updated: 2023-10-02
Stable URL: http://hdl.handle.net/10338.dmlcz/149065
.
Reference: [1] López, J. A. Álvarez, Kordyukov, Y. A., Leichtnam, E.: A trace formula for foliated flow (working paper).Summer Conference on Topology and Its Applications 20 University of Dayton, Dayton (2017), 72 pages.
Reference: [2] Atiyah, M., Bott, R., Patodi, V. K.: On the heat equation and the index theorem.Invent. Math. 13 (1973), 279-330 errata ibid. 28 1975 277-280. Zbl 0257.58008, MR 650828, 10.1007/BF01425417
Reference: [3] Atiyah, M., Patodi, V. K., Singer, I. M.: Spectral asymmetry and Riemannian geometry.Bull. Lond. Math. Soc. 5 (1973), 229-234. Zbl 0268.58010, MR 331443, 10.1112/blms/5.2.229
Reference: [4] Berline, N., Getzler, E., Vergne, M.: Heat Kernels and Dirac Operators.Grundlehren Text Editions. Springer, Berlin (2004). Zbl 1037.58015, MR 2273508, 10.1007/978-3-642-58088-8
Reference: [5] Bismut, J.-M., Zhang, W.: An Extension of a Theorem by Cheeger and Müller.Astérisque 205. Société Mathématique de France, Paris (1992). Zbl 0781.58039, MR 1185803
Reference: [6] Braverman, M., Farber, M.: Novikov type inequalities for differential forms with nonisolated zeros.Math. Proc. Camb. Philos. Soc. 122 (1997), 357-375. Zbl 0894.58012, MR 1458239, 10.1017/S0305004197001734
Reference: [7] Burghelea, D., Haller, S.: On the topology and analysis of a closed one form. I. (Novikov's theory revisited).Essays on Geometry and Related Topics. Volume 1 Monographs of L'Enseignement Mathématique 38. Enseignement Mathématique, Geneva (2001), 133-175. Zbl 1017.57013, MR 1929325
Reference: [8] Burghelea, D., Haller, S.: Dynamics, Laplace transform and spectral geometry.J. Topol. 1 (2008), 115-151. Zbl 1156.57022, MR 2365654, 10.1112/jtopol/jtm005
Reference: [9] Chern, S.-S.: A simple intrinsic proof of the Gauss-Bonnet formula for closed Riemannian manifolds.Ann. Math. (2) 45 (1944), 741-752. Zbl 0060.38103, MR 11027, 10.2307/1969302
Reference: [10] Gilkey, P. B.: Curvature and the eigenvalues of the Dolbeault complex for Kaehler manifolds.Adv. Math. 11 (1973), 311-325. Zbl 0285.53044, MR 334290, 10.1016/0001-8708(73)90014-5
Reference: [11] Gilkey, P. B.: Curvature and the eigenvalues of the Laplacian for elliptic complexes.Adv. Math. 10 (1973), 344-382. Zbl 0259.58010, MR 324731, 10.1016/0001-8708(73)90119-9
Reference: [12] Gilkey, P. B.: The boundary integrand in the formula for the signature and Euler characteristic of a Riemannian manifold with boundary.Adv. Math. 15 (1975), 334-360. Zbl 0306.53042, MR 368084, 10.1016/0001-8708(75)90141-3
Reference: [13] Gilkey, P. B.: Lefschetz fixed point formulas and the heat equation.Partial Differential Equations and Geometry Lecture Notes in Pure and Applied Mathematics 48. Marcel Dekker, New York (1979), 91-147. Zbl 0405.58044, MR 535591
Reference: [14] Gilkey, P. B.: Invariance Theory, the Heat Equation and the Atiyah-Singer Index Theorem.Studies in Advanced Mathematics. CRC Press, Boca Raton (1995). Zbl 0856.58001, MR 1396308
Reference: [15] Gilkey, P. B.: Asymptotic Formulae in Spectral Geometry.Studies in Advanced Mathematics. Chapman & Hall/CRC, Boca Raton (2004). Zbl 1080.58023, MR 2040963, 10.1201/9780203490464
Reference: [16] Gilkey, P. B., Nikčević, S., Pohjanpelto, J.: The local index formula for a Hermitian manifold.Pac. J. Math. 180 (1997), 51-56. Zbl 0885.58091, MR 1474893, 10.2140/pjm.1997.180.51
Reference: [17] Gilkey, P. B., Park, J. H., Sekigawa, K.: Universal curvature identities.Differ. Geom. Appl. 29 (2011), 770-778. Zbl 1259.53013, MR 2846274, 10.1016/j.difgeo.2011.08.005
Reference: [18] Greiner, P.: An asymptotic expansion for the heat equation.Arch. Ration. Mech. Anal. 41 (1971), 163-218. Zbl 0238.35038, MR 331441, 10.1007/BF00276190
Reference: [19] Harvey, F. R., Minervini, G.: Morse Novikov theory and cohomology with forward supports.Math. Ann. 335 (2006), 787-818. Zbl 1109.57019, MR 2232017, 10.1007/s00208-006-0765-4
Reference: [20] Helffer, B., Sjöstrand, J.: Puits multiples en mécanique semi-classique IV: Édude du complexe de Witten.Commun. Partial Differ. Equations 10 (1985), 245-340 French. Zbl 0597.35024, MR 780068, 10.1080/03605308508820379
Reference: [21] Hirzebruch, F.: Topological Methods in Algebraic Geometry.Die Grundlehren der Mathematischen Wissenschaften 131. Springer, Berlin (1966). Zbl 0138.42001, MR 0202713, 10.1007/978-3-642-62018-8
Reference: [22] Lee, S.-C.: A Lefschetz Formula for Higher Dimensional Fixed Point Sets: Ph.D. Thesis.Brandeis University, Waltham (1976). MR 2625269
Reference: [23] H. P. McKean, Jr., I. M. Singer: Curvature and the eigenvalues of the Laplacian.J. Differ. Geom. 1 (1967), 43-69. Zbl 0198.44301, MR 217739, 10.4310/jdg/1214427880
Reference: [24] Minervini, G.: A current approach to Morse and Novikov theories.Rend. Mat. Appl., VII. Ser. 36 (2015), 95-195. Zbl 1361.58007, MR 3533253
Reference: [25] Novikov, S. P.: Multivalued functions and functionals: An analogue of the Morse theory.Sov. Math., Dokl. 24 (1981), 222-226. Zbl 0505.58011, MR 630459
Reference: [26] Novikov, S. P.: The Hamiltonian formalism and a many-valued analogue of Morse theory.Russ. Math. Surv. 37 (1982), 1-56. Zbl 0571.58011, MR 676612, 10.1070/RM1982v037n05ABEH004020
Reference: [27] Novikov, S. P.: Bloch homology. Critical points of functions and closed 1-forms.Sov. Math., Dokl. 33 (1986), 551-555. Zbl 0642.58016, MR 838822
Reference: [28] Patodi, V. K.: An analytic proof of the Riemann-Roch-Hirzebruch theorem for Kaehler manifolds.J. Differ. Geom. 5 (1971), 251-283. Zbl 0219.53054, MR 290318, 10.4310/jdg/1214429991
Reference: [29] Patodi, V. K.: Curvature and the eigenforms of the Laplace Operator.J. Differ. Geom. 5 (1971), 233-249. Zbl 0211.53901, MR 292114, 10.4310/jdg/1214429791
Reference: [30] Pazhitnov, A. V.: An analytic proof of the real part of Novikov's inequalities.Sov. Math., Dokl. 35 (1987), 456-457. Zbl 0647.57025, MR 891557
Reference: [31] Seeley, R. T.: Complex powers of an elliptic operator.Singular Integrals Proceedings of Symposia in Pure Mathematics 10. American Mathematical Society, Providence (1968), 288-307. Zbl 0159.15504, MR 0237943, 10.1090/pspum/010
Reference: [32] Seeley, R. T.: The resolvent of an elliptic boundary value problem.Am. J. Math. 91 (1969), 889-920. Zbl 0191.11801, MR 265764, 10.2307/2373309
Reference: [33] Weyl, H.: The Classical Groups: Their Invariants and Representations.Princeton Mathematical Series 1. Princeton University Press, Princeton (1946). Zbl 1024.20502, MR 1488158, 10.1515/9781400883905
Reference: [34] Witten, E.: Supersymmetry and Morse theory.J. Differ. Geom. 17 (1982), 661-692. Zbl 0499.53056, MR 683171, 10.4310/jdg/1214437492
.

Files

Files Size Format View
CzechMathJ_71-2021-3_20.pdf 429.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo